<span><span>When you write down the electronic configuration of bromine and sodium, you get this
Na:
Br: </span></span>
<span><span />So here we the know the valence electrons for each;</span>
<span><span>Na: (2e)
Br: (7e, you don't count for the d orbitals)
Then, once you know this, you can deduce how many bonds each can do and you discover that bromine can do one bond since he has one electron missing in his p orbital, but that weirdly, since the s orbital of sodium is full and thus, should not make any bond.
However, it is possible for sodium to come in an excited state in wich he will have sent one of its electrons on an higher shell to have this valence configuration:</span></span>
<span><span /></span><span><span>
</span>where here now it has two lonely valence electrons, one on the s and the other on the p, so that it can do a total of two bonds.</span><span>That's why bromine and sodium can form </span>
<span>
</span>
The molar Concentration of KMnO₄ is 0.000219 M
Concentration is the abundance of a constituent divided by means of the overall extent of an aggregate. numerous styles of mathematical description may be outstanding: mass awareness, molar awareness, variety concentration, and quantity awareness.
y is absorbance
x is the molar concentration of KMnO_4
y = 4.84E + 03x - 2.26E - 01
0.833 = 4.84 * 10⁺⁰³ x - 2.26 * 10⁻¹
1.059 = 4.84 * 10⁺⁰³ x
X = 0.000219 M
Hence, The molar Concentration of KMnO₄ is 0.000219 M
Learn more about concentration here:-brainly.com/question/14469428
#SPJ9
An exchange reaction consists of both synthesis and decomposition reactions.
Here’s a complex example: AB + CD → AC + BD.
Another example might be: AB + CD → AD + BC.
4 orbitals. P sublevel has 3 orbitals. 2nd level has 4 orbitals. An f sublevel has 7 orbitals.
I’m pretty the answer would be continental slope. :)
I really hope this helps.