By applying some (compared to other things) simple steps<span>, </span>you can control and prevent soilwearing away<span>! </span>The four most common soil wearing away prevention methods are green plants<span>, </span>geotextiles<span>, </span>mulch<span>, </span>and (big walls to hold back water, soil, etc.)<span>. </span>Green plants<span>: </span>The simplest andmost natural way to prevent wearing away is through planting green plants<span>.</span>
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))
The stored energy in the battery does not work anymore.
A single replacement reaction could look like this:
2FeCl3 + 3Ba ➡️ 3BaCl2 + 2Fe
In this reaction, the barium is replacing the iron bound to the chlorine.
A neutral atom of potassium has 19 electrons.