1) Chemical equation
16Fe(s) + 3S8(s) ---> 8Fe2S3
2) Molar ratios:
16 mol Fe : 3 mole S8 : 8 mol Fe2S3
3) Convert masses in grams to number of moles
number of moles = mass in grams / molar mass
a) iron, Fe
mass = 3.0 g
atomic mass = 55.845 g/mol
=> number of moles of Fe = 3.0g / 55.845 g/mol = 0.0537 mol
b) Sulfur, S8
mass = 2.5 g
molar mass = 8*32.065 g/mol = 256.52 g/mol
=> number of moles of S8 = 2.5g / 256.52 g/mol = 0.009746 mol
4) Limiting reactant
Theoretical ratio actual ratio
16 mol Fe / 3 mol S8 0.0537 mol Fe / 0.009746 mol S8
5.33 5.50
So, there is a little bit more Fe than the theoretical needed to react all the S8, which means the S8 is the limiting reactant.
5) Calculate the number of moles of iron (III) produced with 2.5 g (0.009746 moles) of S8
3moles S8 / 8 moles Fe2S3 = 0.009746 moles S8 / x
=> x = 0.009746 * 8 / 3 moles Fe2S3 = 0.026 moles Fe2S3
6) Convert 0.026 moles Fe2S3 into grams
mass in grams = number of moles * molar mass
molar mass of Fe2S3 = 207.9 g/mol
mass = 0.026 mol * 207.9 g/mol = 5.40 g
7) Answer: option D)
A. Filtration
This is because of the layers of Filter it goes through to make sure it is pure.
Answer:
There must be two Chlorine atoms for every one Calcium atom in order to fulfill Chlorine's octet rule and pair Calcium's unpaired electrons.
Explanation:
Calcium has two unpaired electrons in its Lewis dot structure, while Chlorine has one unpaired electron.
<em>So why can't we just make a double bond for </em><em>one</em><em> Chlorine?</em>
Chlorine has seven valence electrons, so once it shares electrons with Calcium, the octet rule is accomplished, and no more pairs can be made.
Answer:
See the answer below
Explanation:
The chaparral biome is a temperate biome with a characteristic high temperature and dryness during summer and mild rainy winters and springs. The biome can be found in relatively small amounts in the major continents of the world with its rich plant and animal diversity who have successfully adapted to the conditions of the biome.
Due to the high biodiversity of the chaparral biome, <u>one would expect it to be resilient to the loss of a single species.</u> <em>The more the biodiversity of a biome or community, the more resilient such biome or community would be to the loss of species and lower the biodiversity, the more sensitive the community would be to the loss of species. </em>