Answer:
Across a period, effective nuclear charge increases as electron shielding remains constant. A higher effective nuclear charge causes greater attractions to the electrons, pulling the electron cloud closer to the nucleus which results in a smaller atomic radius. ... This results in a larger atomic radius.
Explanation:
Now lets d8
The balanced equation for the formation of ammonia is as follows
N₂ + 3H₂ ---> 2NH₃
stoichiometry of N₂ to H₂ is 1:3
we need to find the moles of N₂, volume of N₂ has been given
molar volume is where 1 mol of any gas occupies a volume of 22.4 L at STP.
if 22.4 L is occupied by 1 mol
then 3.5 L of gas is occupied by - 3.5 L / 22.4 L/mol = 0.16 mol
number of moles of N₂ present - 0.16 mol
1 mol of N₂ requires 3 mol of H₂
therefore 0.16 mol of N₂ requires - 3 x 0.16 = 0.48 mol of H₂
mass of H₂ required - 0.48 mol x 2 g/mol = 0.96 g
0.96 g of H₂ is required
Bohr's atomic model proposed that electrons move in specific orbits around the nucleus of an atom.
Answer:
The heat capacity for the sample is 0.913 J/°C
Explanation:
This is the formula for heat capacity that help us to solve this:
Q / (Final T° - Initial T°) = c . m
where m is mass and c, the specific heat of the substance
27.4 J / (80°C - 50°C) = c . 6.2 g
[27.4 J / (80°C - 50°C)] / 6.2 g = c
27.4 J / 30°C . 1/6.2g = c
0.147 J/g°C = c
Therefore, the heat capacity is 0.913 J/°C