Answer:
a. Boron trifluoride
b. Propane
c. Dinitrogen pentoxide
d. Carbon Dioxide
e. Silicon Octafluroride?
Explanation:
Glad to help :)
You could do how different liquids affect plant growth. Take 3 SAME plant seeds and plant them in the SAME environment. For plant A use juice, for plant B, use milk, and for planting C, use coffee.
Answer:
b. independent/manipulated variable
Explanation:
Independent/manipulated variable - refers to the variable that is changed by the scientist or an experimenter. Only one variable that is independent is required to ensure a fair test in an excellent experiment. As the independent variable is being changed by an experimenter or scientist, data is being recorded simultaneously as they are collected.
Answer:
a)If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.
b)If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.
c)If concentration of
is changed to 0.0001 M than rate will be increased by the factor of 0.01.
d) If concentration when [sucrose] and
both are changed to 0.1 M than rate will be increased by the factor of 1.
Explanation:
Sucrose +
fructose+ glucose
The rate law of the reaction is given as:
![R=k[H^+][sucrose]](https://tex.z-dn.net/?f=R%3Dk%5BH%5E%2B%5D%5Bsucrose%5D)
![[H^+]=0.01M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01M)
[sucrose]= 1.0 M
..[1]
a)
The rate of the reaction when [Sucrose] is changed to 2.5 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.01 M][2.5 M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.01%20M%5D%5B2.5%20M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.
b)
The rate of the reaction when [Sucrose] is changed to 0.5 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.01 M][0.5 M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.01%20M%5D%5B0.5%20M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.
c)
The rate of the reaction when
is changed to 0.001 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.0001 M][1.0M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.0001%20M%5D%5B1.0M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration of
is changed to 0.0001 M than rate will be increased by the factor of 0.01.
d)
The rate of the reaction when [sucrose] and
both are changed to 0.1 M = R'
..[2]
[2] ÷ [1]
![\frac{R'}{R}=\frac{[0.1M][0.1M]}{k[0.01M][1.0 M]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%27%7D%7BR%7D%3D%5Cfrac%7B%5B0.1M%5D%5B0.1M%5D%7D%7Bk%5B0.01M%5D%5B1.0%20M%5D%7D)

If concentration when [sucrose] and
both are changed to 0.1 M than rate will be increased by the factor of 1.
Answer:
Approximately
.
Explanation:
The gallium here is likely to be produced from a
solution using electrolysis. However, the problem did not provide a chemical equation for that process. How many electrons will it take to produce one mole of gallium?
Note the Roman Numeral "
" next to
. This numeral indicates that the oxidation state of the gallium in this solution is equal to
. In other words, each gallium atom is three electrons short from being neutral. It would take three electrons to reduce one of these atoms to its neutral, metallic state in the form of
.
As a result, it would take three moles of electrons to deposit one mole of gallium atoms from this gallium
solution.
How many electrons are supplied? Start by finding the charge on all the electrons in the unit coulomb. Make sure all values are in their standard units.
.
.
Calculate the number of electrons in moles using the Faraday's constant. This constant gives the size of the charge (in coulombs) on each mole of electrons.
.
It takes three moles of electrons to deposit one mole of gallium atoms
. As a result,
of electrons would deposit
of gallium atoms
.