Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
When two objects are in contact,
it should be that the heat lost is equal to what is gained by the other. From
this, we can calculate things. We do as follows:
<span>Heat gained =
Heat lost</span>
mC(T2-T1) = - mC(T2-T1)
C(liquid water) = 4.18 J/gC
C(ice) = 2.11 J/gC
</span><span>(354 mL)(1.0 g/mL)(4.18 J/gC)(26 C - 6 C) = m(2.11 J/gC)(6 - 0C) </span><span>
m = 2337.63 g of ice
</span>
1) deep trenches
2) active volcanoes
3) arcs of islands along the tectonic boundaries
4) in some cases, mountain ranges
Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>
Answer:
blah blah blah blah blah blah blah blah blah blah blah