Answer:
k ≈ 9,56x10³ s⁻¹
Explanation:
It is possible to solve this question using Arrhenius formula:

Where:
k1: 1,35x10² s⁻¹
T1: 25,0°C + 273,15 = 298,15K
Ea = 55,5 kJ/mol
R = 8,314472x10⁻³ kJ/molK
k2 : ???
T2: 95,0°C+ 273,15K = 368,15K
Solving:



<em>k ≈ 9,56x10³ s⁻¹</em>
I hope it helps!
Transverse wave, motion in which all points on a wave oscillate along paths at right angles to the direction of the wave's advance. Surface ripples on water, seismic S (secondary) waves, and electromagnetic (e.g., radio and light) waves are examples of transverse waves.
Explanation:
The answer would be B.
As paramagnetic with 3 unpaired electrons. Since there are 6 ligands around the Co+2 ion it isoctahedral and these ligands are neutral. This makes the overall charge on the complex +2 and therefore comes from the configuration for Co+2 which is [Ar] 3d7. Since it is in high spin you must fill all the orbitals with at least one electron and then pair up any that remain. If you do this, 3 unpaired electrons remain. Para magnetism occurs in substances with unpaired electrons.