Answer:
I say the 1st one I'm so terrible sorry if I'm wrong
Explanation:
Water can take many forms. At low temperatures (below 0°C), it is a solid. When at “normal” temperatures (between 0°C and 100°C), it is a liquid. While at temperatures above 100°C, water is a gas (steam).
The state the water is in depends upon the temperature. Each state (solid, liquid, and gas) has its own unique set of physical properties.
Answer: The difference between the opposing forces; lift minus weight, or thrust minus drag.
Answer:
Mass = 24.36 g of N₂
Explanation:
The balance chemical equation for the decomposition of NaNO₃ is as follow;
2 NaN₃ → 2 Na + 3 N₂
Step 1: Find moles of N₂ as;
According to equation,
2 moles of NaNO₃ produces = 3 moles of N₂
So,
0.58 moles of NaNO₃ will produce = X moles of N₂
Solving for X,
X = 3 mol × 0.58 mol / 2 mol
X = 0.87 mol of N₂
Step 2: Calculate mass of N₂ as,
Mass = Moles × M.Mass
Mass = 0.87 mol × 28.01 g/mol
Mass = 24.36 g of N₂
Based on the data provided;
- number of moles of helium gas is 1.25 moles
- pressure at peak temperature is 259.3 kPa
- internal pressure is above 256 kPa, therefore, the balloon will burst.
- pressure should be reduced to a value less than 256 kPa by reducing the temperature
<h3>What is the ideal has equation?</h3>
The ideal gas equation relatesthe pressure, volume, moles and temperature of a gas.
The moles of helium gas is calculated using the Ideal gas equation:
n is the number of moles of gas
R is molar gas constant = 8.314 L⋅kPa/Kmol
P is pressure = 239 kPa
T is temperature = 21°C = 294 K
V is volume = 12.8 L
Therefore;
n = PV/RT
n = 239 × 12.8 / 8.314 × 294
n = 1.25 moles
The number of moles of helium gas is 1.25 moles
At peak temperature, T = 46°C = 319 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 319/294
P2 = 259.3 kPa
The pressure at peak temperature is 259.3 kPa
At 42°C, T = 315 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 315/294
P2 = 256.07 kPa
Since the internal pressure is above 256 kPa, the balloon will burst.
The pressure should be reduced to a value less than 256 kPa by reducing the temperature.
Learn more about gas ideal gas equation at: brainly.com/question/12873752