A)
R1 = 30/(7*60)
We are multiplying 7 with 60 because there are 60 seconds in 1 minute.
R1 = 30/420 = 0.0714 gallons/second
b) For this we need to express gallons to cubic meters.
1 gallon = 0.003785 m^3
R2 = 0.0714*0.003785 = 0.00027 m^3/s
c) V = R2*t where V is volume of some tank.
which means that
t=V/R2
t = 3698.8s or
t = 1.0274 hours
Well, for the distance traveled, the car goes from the northernmost point to the southernmost point. So, it travels half of the circle's circumference = 4.7/2 = 2.35 km.
For the displacement, by going from the northernmost point to the southernmost point, the car basically just travels the diameter of circle.
So, using the formula: Circumference = 2πr = <span>πd
Hence, the d = C/</span>π = 4.7/<span>π = 1.49605... = 1.5 km (2 significant figures)
Therefore, displacement = 1.5 km</span>
Answer:
The runner's average acceleration is 0.102 m/s²
Explanation:
The runner accelerates from 5 m/s to 5.2 m/s and covering 10 m
We need to find the runner's average acceleration
The given is:
→ Initial velocity 5 m/s
→ Final velocity 5.2 m/s
→ Distance 10 meters
→ Acceleration ?
We need a suitable rule for the given
→ v² = u² + 2 a s
where v is the final velocity, u is the initial velocity, a is the acceleration
and s is the distance
Substitute the values above in the rule
→ (5.2)² = (5)² + 2 a (10)
→ 27.04 = 25 + 20 a
Subtract 25 from both sides
→2.04 = 20 a
Divide both sides by 20
→ a = 0.102 m/s²
<em>The runner's average acceleration is 0.102 m/s²</em>
There will be no way that to happen aton is a positive charge
Answer:
Coefficient of kinetic friction = 0.146
Explanation:
Given:
Mass of sled (m) = 18 kg
Horizontal force (F) = 30 N
FInal speed (v) = 2 m/s
Distance (s) = 8.5 m
Find:
Coefficient of kinetic friction.
Computation:
Initial speed (u) = 0 m/s
v² - u² = 2as
2(8.5)a = 2² - 0²
a = 0.2352 m/s²
Nweton's law of :
F (net) = ma
30N - μf = 18 (0.2352)
30 - 4.2336 = μ(mg)
25.7664 = μ(18)(9.8)
μ = 0.146
Coefficient of kinetic friction = 0.146