Answer:
Explanation:
Potential energy on the surface of the earth
= - GMm/ R
Potential at height h
= - GMm/ (R+h)
Potential difference
= GMm/ R - GMm/ (R+h)
= GMm ( 1/R - 1/ R+h )
= GMmh / R (R +h)
This will be the energy needed to launch an object from the surface of Earth to a height h above the surface.
Extra energy is needed to get the same object into orbit at height h
= Kinetic energy of the orbiting object at height h
= 1/2 x potential energy at height h
= 1/2 x GMm / ( R + h)
Answer:
1) The greatest height attained by the ball equals 20.387 meters.
2) The time it takes for the ball to reach 15 meters approximately equals 1 second.
Explanation:
The greatest height will be attained when the ball stop's in the air and starts falling back to the earth.
thus using third equation of kinematics we obtain the height attained as

where
'v' is the final speed of the ball
'u' is the initial speed of the ball
'a' is the acceleration that the ball is under which in this case equals 9.81 
's' is the distance it covers
Thus for maximum height applying the values in the equation we get

Using the same equation we can find the speed of the ball when it reaches 15 meters of height as

the time it takes to reduce the velocity to this value can be found by first equation of kinematics as

Answer:
c. hot material must be rising from the Sun's hotter interior
Explanation:
Granulation is the grainy appearance of the solar photosphere produced by the top of the convection cells in the sun.
The grainy appearance are produced by granules on the photosphere of the sun and granules are caused by convection currents of plasma within the sun's convection zone.
The interior of these granules are brighter (and thus hotter) than the exterior of the granules which are darker.
<u>So, the granulation pattern that astronomers have observed on the surface of the Sun tells us that hot material must be rising from the Sun's hotter interior.</u>
yes she is very safe inside
Answer:
Ships can float because a ship is less dense than that of the water that it floats on.
Explanation:
Hope this helps!