1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadya68 [22]
3 years ago
10

The process of losing heat that does not

Physics
2 answers:
Alborosie3 years ago
5 0
What’s the question ?
Shalnov [3]3 years ago
3 0

Answer:

heat

Explanation:

You might be interested in
Listed following are the names and mirror diameters for six of the world’s greatest reflecting telescopes used to gather visible
ziro4ka [17]

Answer:

Large binocular telescope, Keck 1 telescope, Hobby-Ebberly telescope, Subaru telescope, Gemini North telescope, Magellan 2 telescope

Explanation:

How much light a telescope can collect depends on its diameter, since in a bigger area more photons will be collected.    

Remember that in a circle the area is defined as:

A = \pi r^{2}  (1)

Where A is the area and r is its radius.

However, the radius can be determined by means of its diameter.

     

d = 2r

r = \frac{d}{2} (1)

Where d is its diameter.

An example of this is when a person is collecting raindrops with a bucket and with a cup. Since the bucket has a bigger area than the cup, it will collect more raindrops by unit of time. In this scenario the raindrops represent the photons.  

   

To determine the light collecting area of each telescope, equation 2 will be replaced in equation 1.

A = \pi (\frac{d}{2})^{2}  (3)

Case for Large binocular telescope:

A_{mirror1} = \pi (\frac{8.4m}{2})^{2}    

A_{mirror1} = 55.41m        

For the second mirror will be the same value

A = A_{mirror1}+A_{mirror2}  

A = 55.41m+55.41m

A= 110.82m

Case for Keck 1 telescope:

A = \pi (\frac{10m}{2})^{2}    

A = 78.53m  

Case for Hobby-Ebberly telescope:

A = \pi (\frac{9.2m}{2})^{2}    

A = 66.47m  

Case for Subaru telescope:

A = \pi (\frac{8.3m}{2})^{2}    

A = 54.10m  

Case for Gemini North telescope:

A = \pi (\frac{8m}{2})^{2}    

A = 50.26m  

Case for Magellan 2 telescope:

A = \pi (\frac{6.5m}{2})^{2}    

A = 33.18m  

Hence, they may be rank in the following way:

Large binocular telescope, Keck 1 telescope, Hobby-Ebberly telescope, Subaru telescope, Gemini North telescope, Magellan 2 telescope.

<em>Key term:</em>

<em>Photons: particles that constitute light. </em>

3 0
3 years ago
Please help (will mark brainliest)
serg [7]

Answer:

if im not mistaken i think its d let me know if correct plz

7 0
2 years ago
Read 2 more answers
A freight train rolls along a track with considerable momentum. If it rolls at the same speed but hastwice as much mass, its mom
Margaret [11]

Its Momentum Would Be Doubled

8 0
3 years ago
A box with mass (m) it's sliding along on a friction-free surface at 9.87 m/s at a height of 1.81 meters. It travels down the hi
Rus_ich [418]
A) The answer is 11.53 m/s

The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi

Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²

Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h

So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² =  1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² =  1/2 vi² + a * h

We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m

1/2 vf² =  1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s


b) The answer is 6.78 m

The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE

Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²

Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h

KE = PE
1/2 m * v² = m * a * h

Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s² 
h = ?

1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
3 0
3 years ago
What is the force of a object that has a mass of 7 kg and an acceleration of 6 m/s/s
UkoKoshka [18]

Answer:

<h2>42 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question

mass = 7 kg

acceleration = 6 m/s²

We have

force = 7 × 6 = 42

We have the final answer as

<h3>42 N</h3>

Hope this helps you

7 0
3 years ago
Other questions:
  • A model is considered to scale if its relative proportions are equal to that of the object its modeling. If a building is twice
    6·1 answer
  • What of the following is an accurate statement
    13·1 answer
  • An astronaut of mass 65kg in training rides in a seat that is moved in uniform circular motion by a radial arm 5.10 meters long.
    11·1 answer
  • Momentum has a _____.<br> a. direction only<br> b. magnitude only<br> c. direction and magnitude
    14·2 answers
  • answers If visible light and radio waves are both examples of electromagnetic waves, why can’t we see radio waves?
    9·1 answer
  • an explanation of conduction(science explanation) pleases helppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
    10·1 answer
  • Work is the quantity of _______________ used to move an object.
    10·1 answer
  • Protons have electrical charge; electrons have. electrical charge
    15·1 answer
  • What is the weight of a 3.5 kg dog on the moon? acceleration of gravity is 1.63 m/s?)
    11·2 answers
  • A person is using a rope to lower a 8.0-N bucket into a well with a constant speed of 2.0 m/s. What is the magnitude of the forc
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!