Explanation:
Given Data
Total mass=93.5 kg
Rock mass=0.310 kg
Initially wagon speed=0.540 m/s
rock speed=16.5 m/s
To Find
The speed of the wagon
Solution
As the wagon rolls, momentum is given as
P=mv
where
m is mass
v is speed
put the values
P=93.5kg × 0.540 m/s
P =50.49 kg×m/s
Now we have to find the momentum of rock
momentum of rock = mv
momentum of rock = (0.310kg)×(16.5 m/s)
momentum of rock =5.115 kg×m/s
From the conservation of momentum we can find the wagons momentum So
wagon momentum=50.49 -5.115 = 45.375 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
Speed of wagon=45.375/(93.5-0.310)
Speed of wagon= 0.487 m/s
Throwing rock backward,
momentum of wagon = 50.49+5.115 = 55.605 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
speed of wagon = 55.605 kg×m/s/(93.5kg-0.310kg)
speed of wagon= 0.5967 m/s
<h3><u>Answer;</u></h3>
Electron cloud
<h3><u>Explanation;</u></h3>
- <em><u>An atom is the smallest particle of an element that can take part in a chemical reaction. Atom is made up of two parts ; that is the nucleus and the electron cloud. The nucleus contain subatomic particles; protons and neutrons, while the electron cloud contains the electrons.</u></em>
- <em><u>The electron cloud is the largest part of the atom and is mostly an empty space. Most of an atom is a cloud of electrons surrounding a space called the nucleus with tiny protons and neutrons.</u></em>
Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:

part a)
Electric Field strength at point P: a = 0.75 m

part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:

E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)
To solve the answer use the equation: a = fnet / m
a = 300 N / 25 kg
300 N / 25 kg = 12m/s
The acceleration of the object is 12m/s
Answer:
v = 3.84 m/s
Explanation:
In order for the riders to stay pinned against the inside of the drum the frictional force on them must be equal to the centripetal force:

where,
v = minimum speed = ?
g = acceleration due to gravity = 9.81 m/s²
r = radius = 10 m
μ = coefficient of friction = 0.15
Therefore,

<u>v = 3.84 m/s</u>