Straightforward, dependable core facility HLA tissue typing service
Using state of the art genotyping technologies as used in HLA typing for organ transplantation
We work with genomic DNA, Saliva, Whole Blood, or Cryopreserved cells
Detailed results typically sent in 3 weeks
typeHLA Tissue Typing Service Overview
Typing technology options
New Next Generation Sequencing (NGS)
PCR-SSOP using Luminex®
(previously called Tier 1)
HLA Class I loci available
A, B and C
(whole Class I panel reported)
A, B, C
(can be ordered individually)
HLA Class II loci available
DRB1, DPB1 and DQB1
(whole Class II panel reported)
DRB1, DRB3,4,5, DPA1*, DPB1, DQA1*, DQB1
(can be ordered individually)
Resolution of typing data
Fully resolved 4 digit (allelic level) typing with no degeneracy for all samples
4 digit (allelic level) typing but with some degeneracy
Features / Restrictions
Only available for ordering whole Class I panel (3 loci) or whole Cass II panel (3 loci) or whole Class I and Class II panel (6 loci)
Can be ordered for each locus individually
Turnaround time (approximate)
3 weeks
Sample formats accepted
gDNA, Cryopreserved PBMCs/other Cells, Blood, Saliva
Report format
Electronic format (PDF, XLS) via secure webserver
Answer:
Knee joint.
Explanation:
The knee joint is a freely movable joint in the body. Usually allows a slight degree of movement.
T-cells are a type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections.
Carbon is an element
Oxygen is an element
The process of RNA editing is the alteration of the sequence of nucleotides in the RNA after it has been transcribed from DNA, but before it is translated into a protein. RNA editing occurs by two distinct mechanisms:<em><u /><u>Substitution</u> <u>editing </u></em>and <u><em>Insertion/</em></u><em></em><u><em>deletion</em></u><em> <u>editing</u></em>.
<u><em>Substitution editing</em></u> is the chemical alteration of individual nucleotides. These alterations are catalyzed by enzymes that recognize a specific target sequence of nucleotides:
*Cytidine Deaminases that convert a C in the RNA to uracil.
*<em />adenosine deaminases that convert an A to inosine,which the ribosome translates as a G.<span>Thus a CAG codon</span><span> (for Gln) can be converted to a CGG codon (for Arg).
<em><u>*Insertion/deletion editing</u></em><em><u /></em><u /> is the insertion or deletion of nucleotides in an RNA.
These alterations are mediated by guide RNA molecules that base-pair as best they can with the RNA to be edited and serve as a template for the addition( or removal) in the target.</span>