Answer : The value of
for the given reaction is, 0.36
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)
First we have to calculate the concentration of
.



Now we have to calculate the value of
for the given reaction.
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)


Therefore, the value of
for the given reaction is, 0.36
Answer:
1) The risk of high cost due to increased resource requirements
2) The risk of late entry into the (a changed) market
Explanation:
The analysis being performed by the engineers = A cost benefit analysis to determine if a new technology should be developed
A cost-benefit analysis is a process of appraising or measuring the advantages, benefits of a policy, action or decision, so as to find the (equilibrium) balance point between the costs of the decision or action
The risk to be considered are;
1) The risk of high cost due to increased resource requirements
The increased cost required for the development of the new technology now which due to the unlikely existence of a similar invention in the market that will give them an advantage of increased profits
2) The risk of late entry into the (a changed) market
The changes in the consumer preferences, market landscape, and the likely introduction into the market of a similar invention by the competition in the near future which will reduce the amount of profits that can be gained from the invention
Answer:
The molar mass of
is 96.8 g/mol
Explanation:
The given molecular formula - 
Individual molar masses of each element in the compound is as follows.
Molar mass of nitrogen - 14.01 g/mol
Molar mass of of hydrogen = 1.008g/mol
Molar mass of carbon = 12.01 g/mol
Molar mass of oxygen =16.00 g/mol
Molar mass of
is
![2\times[1(14.01)+4(1.008)]+1(12.01)+3(16.00)= 96.8g/mol](https://tex.z-dn.net/?f=2%5Ctimes%5B1%2814.01%29%2B4%281.008%29%5D%2B1%2812.01%29%2B3%2816.00%29%3D%2096.8g%2Fmol)
Therefore,The molar mass of
is 96.8 g/mol
The answer is b (bladder)