The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M
I think the answer is that is lights up?
Explanation: Sodium is a metal with a low electronegativity it will form an ionic bond with a non metal with a high electronegativity.
Both Florine and Sulfur are non metals with high electronegativity.
Neon is a noble gas family VIII A and normally doesn't form any bonds at all.
<u><em>MARK ME BRAINLIST</em></u>
Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar