Answer:
An atom is made of up subatomic particles called protons, neutrons and electrons. The center of an atom is called the nucleus and is where the protons and neutrons are held while electrons orbit the nucleus in orbital shells. A electron has a negative charge, a proton has a positive charge, and a neutron has no charge (neutral).
The atomic number of a atom is the total amount of the atom's protons. In a neutral atom (Not an ion), the amount of electrons is the same as the protons. Therefore, the atomic number also tells the amount of electrons in the atom.
A ion is a negatively or positively charged particle due to the giving or taking of electrons with one or more atoms (Called an ionic bond). An atom that gives away electrons becomes positively charge because that atom now has more protons than neutrons. An atom that takes an electron becomes negatively charge because that atom now has more electrons than protons.
Atomic Mass is the sum of an atom proton and neutrons. To determine how many neutron an atom has, subtract the atomic mass from the atomic number. Electrons do not play a part in atomic mass as their mass is 1/1,836 of a proton's mass.
A isotope is two or more forms of the same element that contain equal amounts of protons but different amount of neutrons.
Answer: A) This reaction will be spontaneous only at high temperatures
Explanation:
= +ve, reaction is non spontaneous
= -ve, reaction is spontaneous
= 0, reaction is in equilibrium
Using Gibbs Helmholtz equation:
Given :
Thus the value of
is negative and spontaneous when temperature is high.
Answer:
(NH4)2Cr2O7
Explanation:
Hope this somehow helped.
Explanation:
from the equation 1 mole of O2 will give 2 moles of H2O then 6.0 moles of O2 will give x
6.0*2 moles/ 1 mole
= 12 moles
this implies that, 6.0 moles of O2 will give = 12 moles of water
Answer:
carbon dioxide CO₂
Explanation:
Each gas has a characteristic boiling point. You can separate a random sample of gases by gradually cooling the sample until each component gas liquifies. Some compounds, such as CO₂ never liquify. Instead, they turn directly into solids.