Answer:
a)
b)
c)
d)
Explanation:
From the question we are told that:
Population percentage 
Sample size 
Let x =customers ask for water
Let y =customers dose not ask for water with their meal
Generally the equation for y is mathematically given by

Generally the equation for pmf p(x) is mathematically given by

a)
Generally the probability that exactly 6 ask for water is mathematically given by


b)
Generally the probability that less than 9 ask for water with meal is mathematically given by




c)
Generally the probability that at least 3 ask for water with meal is mathematically given by

![p(x\geq3)=1-[p(0)+p(1)+p(2)]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5Bp%280%29%2Bp%281%29%2Bp%282%29%5D)
![p(x\geq3)=1-[0.00001+0.0015+0.0106]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5B0.00001%2B0.0015%2B0.0106%5D)
![p(x\geq3)=1-[0.0122]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5B0.0122%5D)

d)
Generally the mean and standard deviation of sample size is mathematically given by
Mean

Standard deviation


W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
Answer:
(a) 5.04 eV (B) 248.14 nm (c) 
Explanation:
We have given Wavelength of the light \lambda = 240 nm
According to plank's rule ,energy of light


Maximum KE of emitted electron i= 0.17 eV
Part( A) Using Einstien's equation
, here
is work function.
= 5.21 eV-0.17 eV = 5.04 eV
Part( B) We have to find cutoff wavelength



Part (C) In this part we have to find the cutoff frequency

Answer: 10 m/s
Explanation: Velocity/Time
50/5= 10
:)
Comets orbit the sun just like planets do. Except a comet usually has a very elongated orbit. Thanks to the laws of gravity comets obey the same laws. A comets orbit takes it very close to the sun and then far away again.