In a balanced, non-charged atom, the number of protons (positive charge) is equal to the number of electrons (negative charge)
So there are 92 electrons
Answer is: molarity of hydrofluoric solution is 0.09 M.
Chemical reaction: HF(aq) + KOH(aq) → KF(aq) + H₂O(l).
V(HF) = 30.0 mL.
c(KOH) = 0.122 M.
V(KOH) = 22.15 mL:
c(HF) = ?.
From chemical reaction: n(HF) : n(KOH) = 1 : 1.
n(HF) = n(KOH).
c(HF) · V(HF) = c(KOH) · V(KOH).
c(HF) = c(KOH) · V(KOH) ÷ V(HF).
c(HF) = 0.122 M · 22.15 mL ÷ 30 mL:
c(HF) = 0.09 M.
I think this is what you mean:
H H H H
H-C-C-C-C-H
H H H H
OR
<span>CH3CH2CH2CH3
</span>
If not, clarify and I will be happy to help.
Answer:
Hydrogen bonding, interaction involving a hydrogen atom located between a pair of other atoms having a high affinity for electrons; such a bond is weaker than an ionic bond or covalent bond but stronger than van der Waals forces. Hydrogen bonds can exist between atoms in different molecules or in parts of the same molecule.
Explanation:
Answer:Gained, Lost , Shared
Explanation:
The oxidation state tells you how many electrons an atom has GAINED.................. , LOST....................... , or SHARED........................ , in forming a compound.
Oxidation state is defined as the the total number of electrons that an atom gains or loses when forming a chemical bond with another atom.
----To form an ionic bond for example in NaCl, Na, with 11 electrons and one valence electron in its outermost shell donates or lose that valence electron to Chlorine with 17 electron and 7 in its outermost shell. Therefore Sodium, Na acquires the +1 oxidaton state to become stable and Chlorine acquires the -1 oxidation state to become stable forming the NaCl compound.
To form a covalent compound, There must be sharing of electrons between atoms.For example, in PCl3, The phosphorous atom with atomic number 15 shares its three unpaired electrons with the single valence electrons of three chlorine atoms. making the four molecules to attain stability with Phosphorous having +3 and the chlorine atoms having -1 oxidation states