Answer:
Q = 4019.4 J
Explanation:
Given data:
Mass of ice = 20.0 g
Initial temperature = -10°C
Final temperature = 89.0°C
Amount of heat required = ?
Solution:
specific heat capacity of ice is 2.03 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 89.0°C - (-10°C)
ΔT = 99°C
Q = 20.0 g ×2.03 J/g.°C × 99°C
Q = 4019.4 J
Answer:
Roman numeral notation indicates charge of ion when element commonly forms more than one ion. For example, iron(II) has a 2+ charge; iron(III) a 3+ charge.
Explanation:
Answer:
The answer to your question is
1.- Volume = 3.4 ml
2.- Volume = 0.61 ml
3.- Mass = 2872.8 pounds
Explanation:
Problem 1
Volume = 18 ml
mass = 35.6 g
density = 10.5 g/ml
Process
1.- Calculate the volume of silver
Formula

solve for volume

Substitution

<u>volume = 3.4 ml</u>
2.- Problem 2
Total volume = ?
Volume = 18 + 3.4
Volume = 21.4 ml
Data
mass = 8.3 g
density = 13.6 g(ml
volume = ?
Formula

Solve for volume

Substitution

Result
<u>volume = 0.61 ml</u>
3.- Problem 3
Data
volume = 345 gal
density = 1 g/ml
mass = ?
Formula

Solve for mass
mass = density x volume
Covert gal to ml
1 gal --------------- 3785 ml
345 gal ------------- x
x = (345 x 3785) / 1
x = 1305825 ml
Substitution
mass = 1 x 1305825
mass = 1305825 g
Convert g to pounds
1 g ------------------- 0.0022 pounds
1305825 g ---------------- x
x = (1305825 x 0.0022)
<u> x = 2872.8 pounds</u>
I’m pretty sure cooking an egg could be it