Answer:
What type of work do u have? LOL
Explanation:
<u>Answer:</u>
All of the limiting reagent gets used up causes the percent yield of a reaction to be less than 100%
<u>Explanation:</u>
It is rare for a chemical reaction to occur with the right proportion of reactants that reacts together to form resultant products.During this process, one of the reactants gets used up faster resulting in the lower percent yield. Such product that gets used up faster is called limiting reagent. This limiting reagent is responsible for lowering the percentage yield in the chemical reaction.
The limiting reactant can be found easily by calculating the yield of each reactant assuming they are consumed completely. The reactant which has least yield is the limiting reactant of the reaction.
Answer:
Hiya there!
Explanation:
A covalent bond forms when the difference between the electronegativities of two atoms is too small for an electron transfer to occur to form ions. Shared electrons located in the space between the two nuclei are called bonding electrons. The bonded pair is the “glue” that holds the atoms together in molecular units.
<em><u>Hope this helped!</u></em> ^w^
Credit sourced from "sciencedirect.com"
Answer:
I would use calorimetric to determine the specific heat and I would measure the mass of a sample
Explanation:
I would use calorimetry to determine the specific heat.
I would measure the mass of a sample of the substance.
I would heat the substance to a known temperature.
I would place the heated substance into a coffee-cup calorimeter containing a known mass of water with a known initial temperature.
I would wait for the temperature to equilibrate, then calculate temperature change.
I would use the temperature change of water to determine the amount of energy absorbed.
I would use the amount of energy lost by substance, mass, and temperature change to calculate specific heat.
Conservation of mass can be checked in an experiment . There are three steps to do it in a best way:
1. Weigh all the equipment and materials required in the experiment before the experiment.
2. Avoid spillage and evaporation during the experiment.
3. Weigh all the equipment and materials after the experiment.
If the mass is conserved then weight from step 1 is equal to weight from step 3.