Answer:
False
Explanation:
It is not correct to assert that a chemical change has occurred if the number of atoms is greater after the reaction than it was before the reaction.
For every chemical reaction, the law of conservation of mass must be strictly adhered.
The law states that "during a chemical reaction, matter is neither created nor destroyed, atoms are simply rearranged".
By the virtue of this law, the number of atoms at the beginning and the end of the reaction must remain the same for this law to be applicable.
Answer:
<h2>(1). electron electron repulsion</h2><h2>(2). repulsion </h2><h2>(3). attraction </h2><h2>(4). maximum attraction </h2><h2>(5). attractive </h2><h2>(6). repulsive </h2><h2>(7). maximum attraction </h2><h2>(8). molecule </h2>
Explanation:
The same charges repel each other while opposite charges attract each other. During electron-electron interaction repulsion take palace because the electron has negative charges. Nucleus has positive charges so the interaction between two nucleus results in the form of repulsion. When interaction takes place between nucleus and electron then attraction takes place between nucleus and electrons due to opposite charges.
The formation of a bond that takes place due to the sharing of the electrons is known as a covalent bond and thus the covalent molecule is formed.
An atom having 52 protons and 54 electrons would have an atomic number of 52 and a net charge of -2. This element would be 52 Te 2-, or choice A.
Answer:
It's a very good subject!
Answer:
1) ΔG°r(298 K) = - 28.619 KJ/mol
2) ΔG°r will decrease with decreasing temperature
Explanation:
- CO(g) + H2O(g) → H2(g) + CO2(g)
1) ΔG°r = ∑νiΔG°f,i
⇒ ΔG°r(298 K) = ΔG°CO2(g) + ΔG°H2(g) - ΔG°H2O(g) - ΔG°CO(g)
from literature, T = 298 K:
∴ ΔG°CO2(g) = - 394.359 KJ/mol
∴ ΔG°CO(g) = - 137.152 KJ/mol
∴ ΔG°H2(g) = 0 KJ/mol........pure substance
∴ ΔG°H2O(g) = - 228.588 KJ/mol
⇒ ΔG°r(298 K) = - 394.359 KJ/mol + 0 KJ/mol - ( - 228.588 KJ/mol ) - ( - 137.152 KJ7mol )
⇒ ΔG°r(298 K) = - 28.619 KJ/mol
2) K = e∧(-ΔG°/RT)
∴ R = 8.314 E-3 KJ/K.mol
∴ T = 298 K
⇒ K = e∧(-28.619/(8.314 E-3)(298) = 9.624 E-6
⇒ ΔG°r = - RTLnK
If T (↓) ⇒ ΔG°r (↓)
assuming T = 200 K
⇒ ΔG°r(200 K) = - (8.314 E-3)(200)Ln(9.624E-3)
⇒ ΔG°r (200K) = - 19.207 KJ/mol < ΔG°r(298 K) = - 28.619 KJ/mol