<h2>
Answer:126 ways</h2>
Step-by-step explanation:
Given that the first digit could be any number from
though
.
So,there are
ways to choose the first digit.
Given that the second digit was either
or
.
So,there are
ways to choose the second digit.
Given that the third digit could be any number except
.
So,there are
ways to choose the third digit.
The number of different codes possible is the product of number of ways of choosing first digit,number of ways of choosing second digit and number of ways of choosing third digit.
Total ways are
ways
Answer:
To make this easier, first draw or imagine a vertical line at x=2Find where the vertical line and the graph intersects.Draw or imagine that point
Check the picture below.
notice the tickmarks, thus TP = PU and TQ = QS, so the PQ segment is then a midsegment of the larger triangle, and thus the angles it makes on the small one, are exactly the same.
Assuming you are referring to the area of a "trapezoid"; in which one calculates the Area, "A", as follows:
________________________
<span> A = 1/2* h(b1+b2) ;
in which: A = Area = 16 (given);
h = height = 4 (given);
b1 = length of one of the two bases = 3 (given);
b2 = length of the other of the two bases = ? (what we want to solve for) ;
______________________________________________________
Using the formula: </span>A = 1/2 h(b1+b2) ;
________________________________
Let us plug in our known values:
___________________________
→ 16 = (1/2) * 4*(3 + b2) ; → Solve for "b2".
________________________________
→Note: On the "right-hand side" on this equation: "(1/2)*(4) = 2 ."
________________________________
So, we can rewrite the equation as:
________________________________
→ 16 = 2*(3 + b2) ; → Solve for "b2".
________________________________
We can divide EACH side of the equation by "2"; to cancel the "2" on the "right-hand side" of the equation:
________________________________
→ 16 / 2 = [2*(3 + b2)] / 2 ; → to get:
___________________________
8 = (3 + b2) ;
_________________
→ Rewrite as: 8 = 3 + b2;
_______________________
Subtract "3" from EACH side of the equation; to isolate "b2" on one side of the equation; and to solve for "b2" :
______________________________
→ 8 - 3 = 3 + b2 - 3 ; → to get:
_____________________
b2 = 5; From the 2 (TWO) answer choices given, this value,
"b2 = 5", corresponds with the following answer choice:
____________________
b2= [16-6]/2= 5 ; as this is the only answer choice that has: "b2 = 5".
<span>_________________________________________
As far getting "</span>b2 = 5" from: "b2= [16-6]/2= 5"; (as mentioned in the answer choice), we need simply to approach the problem in a slightly different manner. Let us do so, as follows:
<span>_____________________________________
Start from: </span>A = 1/2 h(b1+b2); and substitute our known (given) values):<span>
________________________
</span>→ 16 = (1/2) *4 (3 + b2) ; → Solve for "b2".
_____________________________
Note that: (½)*4 = 2; so we can substitute "2" for: "(1/2) *4" ;
and rewrite the equation as follows:
_________________________
→ 16 = 2 (3 + b2) ;
____________________
Note: The distributive property of multiplication:
_________________________
a*(b+c) = ab + ac ;
_________
As such: 2*(3 + b2) = (2*3 + 2*b2) = (6 + 2b2).
_________________
So we can substitute: "(6 + 2b2)" in lieu of "[2*(3 + b2)]"; and can rewrite the equation:
______________________
→ <span>16 = 6 + 2(b2) ; Now, we can subtract "6" from EACH side of the equation; to attempt to isolate "b2" on one side of the equation:</span>
<span>________________________________________________
</span>→ 16 - 6 = 6 + 2(b2) - 6 ;
→ Since "6-6 = 0"; the "6 - 6" on the "right-hand side" of the equation cancel.
→ We now have: 16 - 6 = 2*b2 ;
___________
Now divide EACH SIDE of the equation by "2"; to isolate "b2" on one side of the equation; and to solve for "b2":
____________________
→ (16 - 6) / 2 = (2*b2) / 2 ;
→ (16 - 6) / 2 = b2 ;
→ (10) / 2 = b2 = 5.
______________
NOTE: The other answer choice given:
_____________
"<span>16= 1/2* 4(3+b2)= 6+2b2" is incorrect; since it does not solve for "b2".</span>