1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anarel [89]
4 years ago
12

Solve on the interval 0,2pi) 2cscx-3=-5

Mathematics
1 answer:
nydimaria [60]4 years ago
4 0
We have that

<span>2cscx-3=-5---------> 2cscx=-5+3---------> cscx=-2/2---------> cscx=-1

we know that
csc x=1/sin x
then
1/sin x=-1--------------> sin x=-1
x=arcsin (-1)---------> x=-90</span>°
x=-90°---------------> 360°-90°-----------> x=270°------------> 3pi/2<span>

the answer is
x=3pi/2 radians



</span>
You might be interested in
A jar contains 10 blue marbles, 4 red marbles, and 8 white marbles. What are the odds of drawing a blue marble from the bag?
lubasha [3.4K]

Answer:

10/22

10 blue marbles/22 total marbles

(simplified = 5/11)

5 0
3 years ago
What set of numbers is arranged from largest to smallest? (Mind the blue on one of the answers)
nikklg [1K]

Answer:

B

Step-by-step explanation:

it orders the negative things in the top right correctly because the bigger the negative number in the top right the lower the number is aka the greater of a negative number there is

8 0
3 years ago
Read 2 more answers
D’Quan’s grandmother made a quilt for his bed. The quilt is
erik [133]
4.4652 square feet. you just multiply the two
6 0
4 years ago
What is the 99th term counting by 2s
kolbaska11 [484]
You just have to multiply 2 by 99, so the answer is 198.
6 0
3 years ago
Read 2 more answers
Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e
enot [183]

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

8 0
4 years ago
Other questions:
  • PLS ASAP HELP ME WITH 7, 8, and 9! (SHOW WORKK!!) + LOTS OF POINTS!!)
    9·1 answer
  • Help? I've been struggling with this for 20 mins
    6·1 answer
  • Perdita goes to the fruit market with $9 to buy avocadoes. Each avocado costs $2. Write and solve an inequality to find the grea
    8·1 answer
  • Will mark Brainliest. Given ƒ(x) = 3x - 1 and g(x)= -x + 6, find ƒ(-2) + g(5).
    10·2 answers
  • Jim’s allowance is $1.20 per week. Stan’s is 25¢ per day. How long will they have to
    6·1 answer
  • Six times a number is ten plus four times a number
    10·1 answer
  • If the ratio of purple bikes to red bikes is 8 to 12 and there are a total of 100 bikes how many of them are purple
    11·1 answer
  • Which relation is a function?
    5·2 answers
  • Find the IQR of the data set in the dot plot
    7·1 answer
  • If X and Y are 2 finite sets such that n() = 9, n( XY) - 4 and n( XY) -15, then n() is
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!