Answer:
I. 0 m/s
II. 20 m/s
III. Part BC
Explanation:
I. Determination of the initial velocity.
From the diagram given above,
The motion of the car starts from the origin. This implies that the car start from rest and as such, the initial velocity of the car is 0 m/s
II. Determination of the maximum velocity attained.
From the diagram given above, we can see clearly that the maximum velocity is 20 m/s.
III. Determination of the part of the graph that represents zero acceleration.
It important that we know the meaning of zero acceleration.
Zero acceleration simply means the car is not accelerating. This can only be true when the car is moving with a constant velocity.
From the graph given above, the car has a constant velocity between B and C.
Therefore, part BC illustrates zero acceleration.
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.
Answer:
A) 199.78 J
B) 9.292x10^14 J
C) 4.2x10^7 m/s
D) 0.65 m
E) 1.13x10^-8 sec
D) 2.94x10^-9 sec
Explanation:
mass of ball = 0.0580 kg
A)
If smashed at v = 83.0 m/s, KE is
KE = 0.5mv^2
= 0.5 x 0.0580 x 83.0^2
= 199.78 J
B) if returned at v = 1.79×10^8 m/s, KE will be
KE = 0.5mv^2
= 0.5 x 0.0580 x (1.79×10^8)^2
= 9.292x10^14 J
C) during Einstein's return, velocity of rabbit relative to players is
Vr = 2.21×108 m/s
Rabbit's velocity relative to ball = 2.21×10^8 - 1.79×10^8
= 4.2x10^7 m/s
D) the rabbit's speed approaches the speed of light so we consider relativistic effect. The rabbit's measured distance is
l = l°( 1 - v^2/c^2)
= 2.5(1 - 2.21/3)
= 2.5 x 0.26
= 0.65 m
E) according to the players, the time taken by the rabbit is
t = d/v = 2.5/ 2.21×10^8
= 1.13x10^-8 sec
F) the time for rabbit as measured by rabbit is relativistic
t = t°( 1 - v^2/c^2)
= 1.13x10^-8 (1 - 2.21/3)
= 1.13x10^-8 x 0.26
= 2.94x10^-9 sec
Unless the ring by design will have restriction for any outward expansion. The hole will get larger / bigger as you heat this up. The more you heat an object the more it expands, thus the larger the hole gets. The only case is when outward expansion is restricted, the expansion will be inward as it is the only direction the ring can expand to.