Answer:
halogen
Explanation:
It belongs to Group 17 on the periodic table, which is a halogen
The ions formed are NH4(+) and S(2-)
The dissolution reaction of (NH4) 2S in water is as follows:
(NH4) 2S ==> 2 NH4 (+) + S (2-).
Ammonium sulfide is the ammonium salt of hydrogen sulfide. It has the formula (NH4) 2S and belongs to the sulfide family.
It is a relatively unstable compound (crystals decomposing at -18 ° C, but exists and is more stable in aqueous solution.) With a pKa exceeding 15, the hydrosulfide ion cannot be significantly deprotonated by ammonia. Thus, such solutions consist mainly of a mixture of ammonia and hydrosulphide of ammonium, it has a smell, close to that of hydrogen sulfide, and its aqueous solutions can be precisely by emitting H2S.
Answer:
Robert
Explanation:
There is not more than one colour
Answer:
Explanation:
An electrophilic addition reaction occurs when an electrophile attacks a substrate, with the end result being the inclusion of one or many comparatively straightforward molecules along with multiple bonds.
In the given question, the hydrogen bromide provides the electrophile while the bromide is the nucleophile. The mechanism proceeds with the attack of the electrophile on the carbon, followed by deprotonation. This process is continued with a formation of carbocation and the bromide(nucleophile) finally bonds to the carbocation to form a stable product.
The first diagram showcases the possible various starting molecules for the synthesis while the second diagram illustrates their mechanism.
Well, we need to find the ratio of Al to the other reactant.
Al:HCl = 1:3
--> this means that for every 1 Al used, you have to use 3 HCl.
6*3 = 18 moles of HCl needed to fully react with 6 moles of Al. Since 13<18, HCL is the limiting reactant.
The ratio of HCl:AlCl = 3:1
13/3 = 4.3333...
The final answer is HCl is the limiting reactant with 4.3 moles of AlCl3 able to be produced.
Hope this helps!!! :)