If both bars are made of a good conductor, then their specific heat capacities must be different. If both are metals, specific heat capacities of different metals can vary by quite a bit, eg, both are in kJ/kgK, Potassium is 0.13, and Lithium is very high at 3.57 - both of these are quite good conductors.
If one of the bars is a good conductor and the other is a good insulator, then, after the surface application of heat, the temperatures at the surfaces are almost bound to be different. This is because the heat will be rapidly conducted into the body of the conducting bar, soon achieving a constant temperature throughout the bar. Whereas, with the insulator, the heat will tend to stay where it's put, heating the bar considerably over that area. As the heat slowly conducts into the bar, it will also start to cool from its surface, because it's so hot, and even if it has the same heat capacity as the other bar, which might be possible, it will eventually reach a lower, steady temperature throughout.
C- escape into the solar system, because the sun is neither a solid nor a liquid, and the sun already creates its warm temperature from many reactions. the light from the sun can scatter throughout the universe, eventually getting to earth. do, have you ever heard of a wave of light being referred to as a solid or a liquid?
Answer:
s
Explanation:
From the question we are told that
The outer ring with a radius of 30 m
inner Gravity Approximately 9.80 m/s'
Outer Gravity Approximately 5.35 m/s.
Generally the equation for centripetal force is given mathematically as
Centripetal acceleration enables Rotation therefore?

Considering the outer ring,




Therefore solving for Period T
Generally the equation for solving Period T is mathematically given as


s
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
Continental polar (cP) or continental arctic (cA) air masses are cold, dry, and stable. These air masses originate over northern Canada and Alaska as a result of radiational cooling. Maritime polar (mP) air masses are cool, moist, and unstable.
Explanation: