Answer:
E = 124 eV
Explanation:
Given,
The frequency of the X-rays, ν = 3.0 x 10¹⁰ Hz
The formula for calculating the energy of the electromagnetic waves of a single photon of having frequency 'ν' is given by the relation
E = hν joules
Where,
h - Planck's constant (6.626 x 10⁻³⁴ Js)
Substituting the values in the above equation
E = 6.626 x 10⁻³⁴ Js x 3.0 x 10¹⁰ Hz
= 1.9878 x 10⁻²³ J
Converting it into eV
E = 1.9878 x 10⁻²³ x 6.242 x 10¹⁸ eV
= 124 eV
Therefore, the energy in electron volts of X-rays is, E = 124 eV
Answer:
V=21V
Explanation:
In series combination current is same
I=2.6A
R2=8ohm
V2=2.6×8
V2=20.8
V2=21V
Moment of force=fxd
Explain
M=fxd
Answer:
To calculate anything - speed, acceleration, all that - we need <em>data</em>. The more data we have, and the more accurate that data is, the more accurate our calculations will be. To collect that data, we need to <em>measure </em>it somehow. To measure anything, we need tools and a method. Speed is a measure of distance over time, so we'll need tools for measuring <em>time </em>and <em>distance</em>, and a method for measuring each.
Conveniently, the lamp posts in this problem are equally spaced, and we can treat that spacing as our measuring stick. To measure speed, we'll need to bring time in somehow too, and that's where the stopwatch comes in. A good method might go like this:
- Press start on the stopwatch right as you pass a lamp post
- Each time you pass another lamp post, press the lap button on the stopwatch
- Press stop after however many lamp posts you'd like, making sure to hit stop right as you pass the last lamp post
- Record your data
- Calculate the time intervals for passing each lamp post using the lap data
- Calculate the average of all those invervals and divide by 40 m - this will give you an approximate average speed
Of course, you'll never find an *exact* amount, but the more data points you have, the better your approximation will become.