Answer:
Part a)
the tension force is equal to the weight of the crate
Part b)
tension force is more than the weight of the crate while accelerating upwards
tension force is less than the weight of crate if it is accelerating downwards
Explanation:
Part a)
When large crate is suspended at rest or moving with uniform speed then it is given as

here since speed is constant or it is at rest
so we will have


so the tension force is equal to the weight of the crate
Part b)
Now let say the crate is accelerating upwards
now we can say


so tension force is more than the weight of the crate
Now if the crate is accelerating downwards


so tension force is less than the weight of crate if it is accelerating downwards
Force on the particle is defined as the application of the force field of one particle on another particle. the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
<h3>What is electric force?</h3>
Force on the particle is defined as the application of the force field of one particle on another particle. It is a type of virtual force.
The electric force in the second case will be the same as in the first case. Therefore the force on the particle will be the same.



Hence the electrical force between q₁ and q₃ will be –1. 1 × 10¹¹ N.
To learn more about the electric force refer to the link;
brainly.com/question/1076352
Answer:
Field, In physics, a region in which each point is affected by a force.
Explanation:
In the diagram, the ship send sound(?) waves to the water, to determine if there is anything there. If there is something like a sunken ship shown in the diagram, the waves return in a shorter time hence you can understand if theres something or now. This is the principle of radars and sonars.
ANSWER
C.
. newtons
EXPLANATION
According to Newton's second law,
, where
is the mass measured in kilograms.
and
is the acceleration in metres per second square.
We substitute these values to obtain,
.
We rearrange to get,
.
We multiply out the first two numbers and leave our answer in standard form to get,
.
The correct answer is C