Answer:
1626.4 N
Explanation:
Given that a 82 kg man, at rest, drops from a diving board 3.0 m above the surface of the water and comes to rest 0.55 s after reaching the water. What force does the water exert on him?
The parameters to be considered are:
Distance S = 3m
Time t = 0.55s
Since the man started from rest, initial velocity u = 0
Using second equation of motion
S = Ut + 1/2at^2
3 = 1/2 × a × 0.55^2
3 = 1/2 × a × 0.3025
a = 3/ 0.15125
a = 19.83 m/s^2
Force = mass × acceleration
Force = 82 × 19.83
Force = 1626.4 N
Therefore, the force that water exerted on him is 1626.4 N
Answer:
10 seconds.
Explanation:
We can use a kinematic equation where we know the final velocity, initial velocity, acceleration, and need to determine the time <em>t: </em>
<em />
<em />
<em />
The initial velocit is 30 m/s, the final velocity is 0 m/s (as we stopped), and the acceleration is -3 m/s².
Substitute and solve for <em>t: </em>
<em />
<em />
<em />
Hence, it will take the car 10 seconds to come to a stop.
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer:
ummm imma need the picture bud
Explanation:
Answer:

Explanation:
We have:
diameter of the wheel, 
weight of the wheel, 
mass of hanging object to the wheel, 
speed of the hanging mass after the descend, 
height of descend, 
(a)
moment of inertia of wheel about its central axis:



