Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.
A free electron is one which has become detached from a covalent bond between two atoms and is able to move around from atom to atom and possibly take part in electric current flow.
Pressure
= Force/Area
Area = π(d^2)/4
= π(0.4^2)/4
=0.126 m2
Pressure
= 50/0.126
= 396.825 Pa
Answer: f=20 (i think)
Explanation:
all I did was divide 300 and 15.
300/15= 20
The maximum height attained is 460 m.
<h3>What is the maximum height?</h3>
We know that the final velocity of a body is 0 m/s at the maximum height which is the greatest height that is attained by the body. We now use the formula;
v^2 = u^2 -2gh
Given that v = 0 m/s
u^2 = 2gh
h = u^2/2g
v = final velocity
u = initial velocity
h = maximin height
g = acceleration due to gravity
h = (95)^2/2 * 9.8
h = 460 m
Learn more about maximum height:brainly.com/question/6261898
#SPJ1