Option (b) is your correct answer.
Step-by-step explanation:
![\large\underline{\sf{Solution-}}](https://tex.z-dn.net/?f=%5Clarge%5Cunderline%7B%5Csf%7BSolution-%7D%7D)
Given Trigonometric expression is
![\rm :\longmapsto\:\dfrac{sin\theta }{1 + cos\theta }](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3A%5Cdfrac%7Bsin%5Ctheta%20%7D%7B1%20%2B%20cos%5Ctheta%20%7D)
So, on rationalizing the denominator, we get
![\rm \: = \: \dfrac{sin\theta }{1 + cos\theta } \times \dfrac{1 - cos\theta }{1 - cos\theta }](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7Bsin%5Ctheta%20%7D%7B1%20%2B%20cos%5Ctheta%20%7D%20%20%5Ctimes%20%5Cdfrac%7B1%20-%20cos%5Ctheta%20%7D%7B1%20-%20cos%5Ctheta%20%7D%20)
We know,
![\purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) = {x}^{2} - {y}^{2} \: }}}](https://tex.z-dn.net/?f=%20%5Cpurple%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%28x%20%2B%20y%29%28x%20-%20y%29%20%3D%20%20%7Bx%7D%5E%7B2%7D%20-%20%20%7By%7D%5E%7B2%7D%20%5C%3A%20%7D%7D%7D)
So, using this, we get
![\rm \: = \: \dfrac{sin\theta (1 - cos\theta )}{1 - {cos}^{2}\theta }](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7Bsin%5Ctheta%20%281%20%20-%20%20cos%5Ctheta%20%29%7D%7B1%20-%20%20%7Bcos%7D%5E%7B2%7D%5Ctheta%20%20%7D%20)
We know,
![\purple{\rm :\longmapsto\:\boxed{\tt{ {sin}^{2}x + {cos}^{2}x = 1}}}](https://tex.z-dn.net/?f=%20%5Cpurple%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%20%7Bsin%7D%5E%7B2%7Dx%20%2B%20%20%7Bcos%7D%5E%7B2%7Dx%20%3D%201%7D%7D%7D)
So, using this identity, we get
![\rm \: = \: \dfrac{sin\theta (1 - cos\theta )}{{sin}^{2}\theta }](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7Bsin%5Ctheta%20%281%20-%20%20cos%5Ctheta%20%29%7D%7B%7Bsin%7D%5E%7B2%7D%5Ctheta%20%20%7D%20)
![\rm \: = \: \dfrac{1 - cos\theta }{sin\theta }](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%20-%20cos%5Ctheta%20%7D%7Bsin%5Ctheta%20%7D%20)
<u>Hence, </u>
![\\ \red{\rm\implies \:\boxed{\tt{ \rm \:\dfrac{sin\theta }{1 + cos\theta } = \: \dfrac{1 - cos\theta }{sin\theta } }}} \\](https://tex.z-dn.net/?f=%20%5C%5C%20%5Cred%7B%5Crm%5Cimplies%20%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Crm%20%5C%3A%5Cdfrac%7Bsin%5Ctheta%20%7D%7B1%20%2B%20cos%5Ctheta%20%7D%20%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%20-%20cos%5Ctheta%20%7D%7Bsin%5Ctheta%20%7D%20%7D%7D%7D%20%5C%5C%20)
Answer:
lol
Step-by-step explanation:
A) The correct way to write 1/4 as a precent is 25%.
because....
1÷4= .25. and .25×100= 25%
b) The reporter most likely forgot to multiply by 100. The reporter instead just found what 1/4 was as a decimal, not a precent.
I would say the answer would be B
For the first one t could be a volcano that’s slowly caving in over time, and for the 2nd one it could be a store that’s selling something, and the cost per person was bigger when there was less people, but since more people came they didn’t have to charge as much ^ ^