Answer:
The mol fraction of cyclohexane in the liquid phase is 0.368
Explanation:
Step 1: Data given
Mass of cyclohexane = 25.0 grams
Mass of 2-methylpentane = 44.0 grams
Temperature = 35.0 °C
The pressure of cyclohexane = 150 torr
The pressure of 2-methylpentane = 313 torr
The pressure we only need for the mole fraction in gas phase.
Step 2: Calculate moles of cyclohexane
Moles cyclohexane = mass cyclohexane / molar mass
Moles cyclohexane = 25.0 g / 84 g/mol = 0.298 mol of cyclohexane
Step 3: Calculate moles of 2-methylpentane
Moles = 44.0 grams / 86 g/mol = 0.512 mol of 2-methylpentane
Step 4: Calculate mole fraction of cyclohexane in the liquid phase
Mole fraction of C6H12:
0.298 / (0.298 + 0.512) = 0.368
The mol fraction of cyclohexane in the liquid phase is 0.368
Answer:
Density depends on the amount of the substance you have, as the mass will increase, but also what the volume is because if you have a high mass object with an extremely high volume, it won't be very dense. But if you have a high mass object with a low volume, it will be very dense.
Answer:
3.59 moles
Explanation:
Hopefully this helps! :)
Mark as brainliest if right!
An ester , propyl methanoate ( HCOOC₃H₇) when reacts with sodium hydroxide( NaOH) forms sodium methanoate (HCOONa) as the main product and propanol (C₃H₇OH).
The reaction is as follows:
HCOOC₃H₇+NaOH ⇒HCOONa + C₃H₇OH
So when propyl methanoate is hydrolyzed in water and in NaOH then sodium methanoate (HCOONa) as the main product and propanol (C₃H₇OH) forms