Answer: 15.850
Explanation:
The conversion used from liters to gallons is:
1 L = 0.264172 gallon
The conversion used from sec to min is:
60 sec = 1 min
1 sec =
We are asked: liters/sec = gallons/min
Therefore, to convert from liters/second to gallons/minute, multiply the number of liters/second by 15.850.
Answer:
The Answer is 2,86 grs Na2CO3
Explanation:
What we have to do is find the mass of Na2CO3 as a pure component or solute. That's because the 11,8 mL are a solution of Na2CO3. This means, the sum between the solute Na2CO3 and water. To find the grams of Na2CO3 as pure component we create a factor series as is shown in the attached file.
Data:
Density of solution (ρ) = 1,10 grs sln Na2CO3/mL sln Na2CO3
Mass Percentage (%) = 22 grs Na2CO3/100 grs sln Na2CO3
The procedure is explained in the attached file
Explanation:
The important quantum-mechanical concepts associated with the Bohr model of atom are :
1. Electrons are nothing but particles that revolve around the nucleus in discrete orbitals.
2. Energy is associated with each orbital is quantised. Meaning electron in each shell will have energy in multiple of a fixed quanta.
Answer:
Four covalent bonds.
Explanation:
Hello,
In this case, given the attached picture in which you can find the Lewis dot structure for metanal (formaldehyde) we can see two C-H bonds and two C-O bonds via a double bond, thus, we can compute the type of each bond given the electronegativities of hydrogen, carbon and oxygen which are 2.1, 2.5 and 3.5 respectively:

Thus, since both electronegativity difference are less 1.7 we infer that all of them are covalent, therefore, it has four covalent bonds, two C-H bonds and a double C-O bond.
Best regards-