Answer: The limiting reactant is Na
Explanation:
Answer:
Your body temperature would decrease
Explanation:
Answer: Option (b) is the correct answer.
Explanation:
In a chemical reaction, the bonds between the reactant molecules tend to break leading to the formation of new bonds to produce products.
So, in order to break the bonds between the reactant molecules, energy is required to overcome the attraction between the atoms.
To form new bonds, energy gets released when two atoms come closer to each other. Hence, formation of bond releases energy.
As in the given reaction it is shown that
< 0, that is, enthalpy change is negative. Hence, energy is released as it is an exothermic process.
Thus, we can conclude that the statement energy released as the bonds in the reactants is broken is greater than the energy absorbed as the bonds in the products are formed, is true about the bond energies in this reaction.
Answer:
Occluded Front
Explanation:
"Occluded Front Forms when a warm air mass gets caught between two cold air masses. The warm air mass rises as the cool air masses push and meet in the middle. The temperature drops as the warm air mass is occluded, or “cut off,” from the ground and pushed upward."
-
www.eduplace.com › science › hmxs › pdf
The total pressure of the gaseous mixture has been 5.37 atm. Thus, option D is correct.
The partial pressure has been defined as the pressure exerted by each gas in the mixture.
According to the Dalton's law of partial pressure, the total pressure of gas has been the sum of the partial pressure of the gases in the mixture.
The given partial pressure of gases in the mixture has been:
- Partial pressure of Nitrogen,

- Partial pressure of Oxygen,

- Partial pressure of Argon,

- Partial pressure of Helium,

- Partial pressure of Hydrogen,

The total pressure of the gaseous mixture has been:

The total pressure of the gaseous mixture has been 5.37 atm. Thus, option D is correct.
For more information about partial pressure, refer to the link:
brainly.com/question/14623719