We think of sound as something we hear—something that makes noise. But in pure physics terms, sound is just a vibration going through matter.
The way a vibration “goes through” matter is in the form of a sound wave. When you think of sound waves, you probably think of something like this:1
But that’s not how sound waves work. A wave like that is called a transverse wave, where each individual particle moves up and down to create a snake situation.
A sound wave is more like an earthworm situation:2
Like an earthworm, sound moves by compressing and decompressing. This is called a longitudinal wave. A slinky can do both kinds of waves:13
Sound starts with a vibration of some kind creating a longitudinal wave through matter. Check this out:4
That’s what sound looks like—except picture an expanding ripple of spheres doing that. In this animation, the sound wave is being generated by that vibrating grey bar on the left. The bar might be your vocal chords, a guitar string, or a waterfall continually pounding down into the river below. By looking at the red dots, you can see that even though the wave moves in one direction, each individual particle only moves back and forth, mimicking the vibration of the gray bar.
So instead of a curvy snake wave, sound is a pressure wave, which causes each piece of the air to be at either higher-than-normal pressure or lower-than-normal pressure. So when you see a snake-like illustration of a sound wave, it’s referring to the measure of pressure, not the literal path of movement of the particles:5