Answer;
- June 21
At 45 degrees latitude, the angle of the noon sun is lowest and the length of daylight is shortest on June 21.
Explanation;
-On June 21 you will note that the Northern Hemisphere is pitched toward the Sun. This means that the Sun's vertical ray is striking the Earth at the Tropic of Cancer (23.5 degrees N).
-Days tend to get longer in the northern hemisphere from December 21 to June 21, and then grow shorter from June 21 to December 21. The June solstice is the summer solstice in the Northern Hemisphere and the winter solstice in the Southern Hemisphere. The date varies between June 20 and June 22, depending on the year, and the local time zone.
Answer:
a)
= 4.67m/s
b) V = 8.29 m/s
Explanation:
Givens:
The bullet is 5.30g moving at 963m/s and its speed reduced to 426m/s. The wooden block is 610g.
a) From conservation of linear momentum
Pi = Pf

where
are the mass and the initial velocity of the bullet,
and
are the mass and the initial velocity of the wooden block, and
and
are the final velocities of the wooden block and the bullet
The wooden block is initial at rest
this yields

By solving for
adn substitute the givens
= 
= 
= 4.67m/s
b) The center of mass speed is defined as

substituting:

V = 8.29 m/s
The given question is incomplete. The complete question is as follows.
A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0.90 m/s each second. The push force has a horizontal component of 20 N and a vertical component of 25 N downward. Calculate the coefficient of kinetic friction between the box and the floor.
Explanation:
The given data is as follows.
= 20 N,
= 25 N, a = -0.9
W = 83 N
m = 
= 8.46
Now, we will balance the forces along the y-component as follows.
N = W +
= 83 + 25 = 108 N
Now, balancing the forces along the x component as follows.
= ma
= 7.614 N
Also, we know that relation between force and coefficient of friction is as follows.

= 
= 0.0705
Thus, we can conclude that the coefficient of kinetic friction between the box and the floor is 0.0705.
Answer:
15.88°C I am not 100% sure this is right but I am 98% sure this IS right
Answer:
Did you ever get the answer?
Explanation: