The gravitational force between two object depends on their masses and on their distance.
Since the formula is
If the masses grow, the force also grows. But I'm assuming the two objects are fixed, so you can't enlarge their mass.
So, the only option remaining is to lower their distance: since it sits at the denominator, a smaller value of d results in a bigger value for F.
So, if you reduce the distance between two objects, the gravitational force between them will always result in an increase
Answer:
2 seconds
Explanation:
The function of height is given in form of time. For maximum height, we need to use the concept of maxima and minima of differentiation.
Differentiate with respect to t on both the sides, we get
For maxima and minima, put the value of dh / dt is equal to zero. we get
- 32 t + 64 = 0
t = 2 second
Thus, the arrow reaches at maximum height after 2 seconds.
Answer:
y = 17 m
Explanation:
For this projectile launch exercise, let's write the equation of position
x = v₀ₓ t
y = t - ½ g t²
let's substitute
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
the maximum height the ball can reach where the vertical velocity is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
0 = v₀ sin θ - 9.8 t
Let's write our system of equations
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
0 = v₀ sin θ - 9.8 t
We have a system of three equations with three unknowns for which it can be solved.
Let's use the last two
v₀ sin θ = 9.8 t
we substitute
10 = (9.8 t) t - ½ 9.8 t2
10 = ½ 9.8 t2
10 = 4.9 t2
t = √ (10 / 4.9)
t = 1,429 s
Now let's use the first equation and the last one
45 = v₀ cos θ t
0 = v₀ sin θ - 9.8 t
9.8 t = v₀ sin θ
45 / t = v₀ cos θ
we divide
9.8t / (45 / t) = tan θ
tan θ = 9.8 t² / 45
θ = tan⁻¹ ( 9.8 t² / 45
)
θ = tan⁻¹ (0.4447)
θ = 24º
Now we can calculate the maximum height
v_y² = - 2 g y
vy = 0
y = v_{oy}^2 / 2g
y = (20 sin 24)²/2 9.8
y = 3,376 m
the other angle that gives the same result is
θ‘= 90 - θ
θ' = 90 -24
θ'= 66'
for this angle the maximum height is
y = v_{oy}^2 / 2g
y = (20 sin 66)²/2 9.8
y = 17 m
thisis the correct
Answer:
<h2>
128.61 Watts</h2>
Explanation:
Average power done by the torque is expressed as the ratio of the workdone by the toque to time.
Power = Workdone by torque/time
Workdone by the torque = =
I is the rotational inertia = 16kgm²
To get the angular acceleration, we will use the formula;
Workdone by the torque = 16 * 1.28 * 12.56
Workdone by the torque = 257.23 Joules
Average power done by the torque = Workdone by torque/time
= 257.23/2.0
= 128.61 Watts
Acceleration will be 9.81 if it goes downwards. If it accelerates upwards it will be -9.81m/s^2