Removing an electron from a neutral atom will result in an atom that is positive.
39.2 J
Explanation:
Step 1:
To find the potential energy the following formula is used.
Potential Energy = m × g × h
Where,
m = Mass
g = Acceleration due to gravity
h = Height
Step 2:
Here m = 4 kg, g = 9.8 m/s², h = 1 m
Potential Energy = ( 4 × 9.8 × 1)
= 39.2 J
Answer:
abisko, sweden
Explanation:
A bisco is the home to their eyes sky station an epic center for Aurora expanses and northern Sweden. During summer months, the Sun Bates to town and up to 24 hours of sunlight per day.
The mass of the hoop is the only force which is computed by:F net = 2.8kg*9.81m/s^2 = 27.468 N
the slow masses that must be quicker are the pulley, ring, and the rolling sphere.
The mass correspondent of M the pulley is computed by torque τ = F*R = I*α = I*a/R F = M*a = I*a/R^2 --> M = I/R^2 = 21/2*m*R^2/R^2 = 1/2*m
The mass equal of the rolling sphere is computed by: the sphere revolves around the contact point with the table. So using the proposition of parallel axes, the moment of inertia of the sphere is I = 2/5*mR^2 for spin about the midpoint of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. I = 7/5*mR^2 M = 7/5*m
the acceleration is then a = F/m = 27.468/(2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
Acceleration means speeding up, slowing down, or changing direction. The graph doesn't show anything about direction, so we just have to examine it for speeding up or slowing down ... any change of speed.
The y-axis of this graph IS speed. So the height of a point on the line is speed. If the line is going up or down, then speed is changing.
Sections a, c, and d are all going up or down. Section b is the only one where speed is not changing. So we can't be sure about b, because we don't know if the track may be curving ... the graph can't tell us that. But a, c, and d are DEFINITELY showing acceleration.