Answer:
F = 2,894 N
Explanation:
For this exercise let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
F = m w² r
The radius r and the length of the rope is related
cos is = r / L
r = L cos tea
Let's replace
F = m w² L cos θ
Let's reduce the magnitudes to the SI system
m = 101.7 g (1 kg / 1000g) = 0.1017 kg
θ = 5 rev (2π rad / rev) = 31,416 rad
w = θ / t
w = 31.416 / 5.1
w = 6.16 rad / s
F = 0.1017 6.16² 0.75 cos θ
F = 2,894 cos θ
The maximum value of F is for θ equal to zero
F = 2,894 N
Answer:
The height of the building is 8,302.5 m
Explanation:
Given;
velocity of the projectile, u = 36 m/s
time of motion, t = 45 s
Let the upward direction of the bullet be negative,
The height of the building is calculated as;
The one fact that needs to be mentioned but isn't given anywhere on or around the graph is: The distance, on the vertical axis, is the distance FROM home. So any point on the graph where the distance is zero ... the point is in the x-axis ... is a point AT home.
Segment D ...
Walking AWAY from home; distance increases as time increases.
Segment B ...
Not walking; distance doesn't change as time increases.
Segment C ...
Walking away from home, but slower than before; distance increases as time increases, but not as fast. Slope is less than segment-D.
Segment A ...
Going home; distance is DEcreasing as time increases. Walking pretty fast ... the slope of the line is steep.
I think it 32, but i’m not sure