The correct answer is B. it converts mechanical energy to electrical energy.
Explanation:
It is given that,
An electron is released from rest in a weak electric field of, 
Vertical distance covered, 
We need to find the speed of the electron. Let its speed is v. Using third equation of motion as :

.............(1)
Electric force is
and force of gravity is
. As both forces are acting in downward direction. So, total force is:



Acceleration of the electron, 


Put the value of a in equation (1) as :


v = 0.010 m/s
So, the speed of the electron is 0.010 m/s. Hence, this is the required solution.
Answer:
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
Explanation:
Hi there!
The total momentum of the system is given by the sum of the momentum vectors of each cart. The momentum is calculated as follows:
p = m · v
Where:
p = momentum.
m = mass.
v = velocity.
Then, the momentum of the system will be the momentum of cart A plus the momentum of cart B (let´s consider the right as the positive direction):
mA · vA + mB · Vb
0.450 kg · 0.850 m/s + 0.300 kg · (- 1.12 m/s) = 0.047 kg · m/s
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
Frequency is given in units of Hertz (Hz) and is defined as the number of cycles per second. The sound wave has 30,000 cycles per second, so its frequency is 30,000Hz.
This is more conveniently expressed as 30kHz, where the k indicates a multiplier of 1,000.
Answer:
The dose is 6 mSV
Explanation:
The absorbed dose (in gray - Gy) is the amount of energy that ionizing radiation deposits per unit mass of tissue. That is,
Absorbed dose = Energy deposited / Mass
while Dose equivalent (DE) (in Seivert -Sv) is given by
DE = Absorbed dose × RBE (Relative biological effectiveness)
First, we will determine the Absorbed dose
From the question, Energy deposited = 30mJ and Mass = 50kg
From,
Absorbed dose = Energy deposited / Mass
Absorbed dose = 30mJ/50kg
Absorbed dose = 0.6 mGy
Now, for the Dose equivalent (DE)
DE = Absorbed dose × RBE
From the question, RBE = 10
Hence,
DE = 0.6mGy × 10
DE = 6 mSv