Answer:
(a) The final angular speed is 12.05 rad/s
(b) The time taken to turn 5.5 revolutions is 5.74 s
Explanation:
Given;
number of revolutions, θ = 5.5 revolutions
acceleration of the wheel, α = 20 rpm/s
number of revolutions in radian is given as;
θ = 5.5 x 2π = 34.562 rad
angular acceleration in rad/s² is given as;

(a)
The final angular speed is given as;

(b) the time taken to turn 5.5 revolutions is given as

The density of the nickel was greater than that of the quarter and penny, thus, the results supports the hypothesis.
<h3>What is density of substance?</h3>
The density of a substance is a measure of how tightly-packed the particles of the substance are.
Density is calculated as the ratio of the mass of the substance and the volume of the substance.
The hypothesis of the lab to compare the densities of a penny, a nickel, and a quarter is:
- If the nickel has a greater density than the quarter and penny, then it will have a greater mass to volume ratio. If the nickel has a lower density than the quarter and penny, then it will have a lower mass-to-volume ratio.
The average mass and the average volume of a penny, a nickel, and a quarter are then used to determine the density of each coin.
Based on obtained results, it would be found that the density of the nickel was greater than that of the quarter and penny. Therefore, the results supports the hypothesis.
In conclusion, the density of a substance depends on the mass and the volume.
Learn more about density at: brainly.com/question/1354972
#SPJ1
The average speed would be 0.65 m/s, therefore the correct option is (A).
The average speed is calculated by the formula
Average speed= (total distance/ total time)
The total distance of the trip=9.5+3.5+15=28 m
The total time of trip=43 sec
Therefore the average speed=28/43=0.65 m/s.
Answer:
4. Electrons move from higher energy states to lower energy states.
Explanation:
When electrons fall from a higher (excited) energy state to a lower energy state, it loses/gives out energy.
This energy is given out by the emission of photons (quanta of light) by the electron.