Explanation:
It is given that,
= -40 mi/h,
= -40 mi/h
The negative sign indicates that x and y are decreasing.
We have to find
. Equation for the given variables according to the Pythagoras theorem is as follows.

Now, we will differentiate each side w.r.t 't' as follows.

or, 
So, when x = 4 mi, and y = 3 mi then z = 5 mi.
As, 
= 
= 
= 52
Thus, we can conclude that the cars are approaching at a rate of 52 mi/h.
Answer:
m 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 mm 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 m
Explanation:
That is a reason
Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.
Answer:
-2.79 m/s²
Explanation:
Given:
v₀ = 20 m/s
v = 11 m/s
Δx = 50 m
Find: a
v² = v₀² + 2aΔx
(11 m/s)² = (20 m/s)² + 2a (50 m)
a = -2.79 m/s²
Round as needed.