Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Answer:
60km/hr west
Explanation:
When you are dealing with velocity you always name the direction its going in
Answer:
Time period between the successive beats will be 0.1703 sec
Explanation:
We have given speed of the sound v = 349 m/sec
Wavelength of piano 
Wavelength of piano 
So frequency of piano A 
Frequency of piano B 
So beat frequency f = 455.61 - 449.74 = 5.87 Hz
So time period 
So time period between the successive beats will be 0.1703 sec
if the pointy thingy in your compass is pointing north, that means it's being (pulled toward) something near Earth's north pole
Answer:
, charges are both positive or both negative
Explanation:
The electrostatic force between the two spheres is given by

where
k is the Coulomb's constant
q1 and q2 are the charges on the two spheres
r is the distance between the centres of the two spheres
In this problem, we have
is the force
is the distance between the spheres
because the two spheres have identical charge
Solving the formula for q, we find

And the two charges have the same sign (so, both positive or both negative), since the sign of the force is positive (+0.30 N), so it is a repulsive force.