The best way to do this is to google search each question, or look it up on quizlet.com
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
4) would be your correct answer
<span>For this reaction, oxidation number of Carbon in
CO would be +2 while oxidation number of carbon in CO2 would be +4 and so this
means that carbon has oxidized. Oxidation number of nitrogen in NO is +2. While
oxidation number of nitrogen in N2 is 0 so this means that nitrogen had reduced.
The reducing agent is the one which provides electrons by oxidizing itself so
in this case; CO is the reducing agent while the C in CO oxidized to produce
electrons. </span><span>I
am hoping that this answer has satisfied your query about and it will be able
to help you, and if you’d like, feel free to ask another question.</span>
Look at the periodic table to find the charge on atoms.
Magnesium is +2 and Nitrogen is -3. Since there are two nitrogen charge 2*-3 = -6 there needs to be 3 Mg then (3*2+ = 6+) to pair with the two nitrogen.
3 Mg(+2) + 2 N(-3) = Mg3N2