Hydrogen is a
covalent bond. (A bond where one or more pairs of electrons are shared by two atoms)
Answer:
the answer that you are looking for is d
Explanation:
Answer:
1040%
Explanation:
To solve this question we must convert the mass of Iron to moles in order to find limiting reactant. With limiting reactant we can find the theoretical moles of hydrogen and theoretical mass:
Percent yield = Actual yield (5.40g) / Theoretical yield * 100
<em>Moles Fe -Molar mass: 55.845g/mol-:</em>
10.3g * (1mol / 55.845g) = 0.184 moles of Fe will react.
For a complete reaction of these moles there are necessaries:
0.184 moles Fe* ( 3 mol H2SO4 / 2 mol Fe) = 0.277 moles H2SO4.
As there are 14.8 moles of the acid, <em>Fe is limiting reasctant.</em>
The moles of H2 produced are:
0.184 moles Fe* ( 3 mol H2 / 2 mol Fe) = 0.277 moles H2
The mass is:
0.277 moles H2 * (2.016g/mol) = 0.558g H2
Percent yield is:
5.40g / 0.558g * 100 = 1040%
It is possible the experiment wasn't performed correctly
Answer:
1. Lysine
2. Aspartic acid
3. Serine
4. Alanine
5. Tryptophan
Explanation:
Amino acids are biomolecules that contain two functional groups and one R side chain. The two functional groups are: carboxyl group and amino group.
The α-amino acids are the amino acids in which the two functional groups and the R side chain are attached to the α-carbon of the amino acid. They are total 22 α-amino acids.
1. A basic amino acid: Lysine is a positively charged, polar basic amino acid with a lysyl side chain.
2. An acidic amino acid: Aspartic acid is a negatively charged, polar acidic amino acid with an acidic carboxymethyl group.
3. A neutral polar amino acid: Serine is a polar and neutral amino acid with a hydroxymethyl group.
4. A non-polar aliphatic amino acid: Alanine is an aliphatic, nonpolar and neutral amino acid with a methyl side chain.
5. An aromatic amino acid: Tryptophan is an aromatic, nonpolar and neutral amino acid with an indole side chain.
The elements of the "Noble" gases group is nonreactive. The reason for this is that noble gases are always or most of the time at room temperature.<span />