25 drops of acid is required to neutralize the 50.0 ml of 0.010m of NaOH in the experiment.
The equation of the reaction is;
NaOH(aq) + HCl(aq) ---------> NaCl(aq) + H2O(l)
We can use the titration formula;
CAVA/CBVB = NA/NB
CA= concentration of acid
VA = volume of acid
CB = concentration of base
VB = volume of base
NA = number of moles of acid
NB = number of moles of base
CB = 0.010 M
VB = 50.0 ml
CA = 0.50 M
VA = ?
NA = 1
NB = 1
Substituting values;
CAVANB = CBVBNA
VA = 0.010 × 50.0 × 1/ 0.50 × 1
VA = 1 ml
Since the total volume of acid used is 1 ml and each drop contains 0.040 ml
The number of drops required is 1ml/0.040 ml = 25 drops
Learn more: brainly.com/question/1527403
The choices are true about the characteristic of a strong base, except for it having a concentration of above 1.0 M. Therefore, the answer is letter A. The concentration of the base is not a very important as to how strong really the base is.
A goes with u, C with G, and T with A
Answer:
Mrs. Nogaki is right because Mr. Holmes’s BBQ produces 3x more CO2 for each mole of fuel burned.
Explanation:
Now Mrs. Nogaki has already figured out the chemical combustion reaction behind the operation of her BBQ. It is pertinent to reproduce it here.
CH4(g) + 2O2(g)→CO2(g) +2H2O(g)
She already has this figured out but Mr. Holmes doesn't have any chemical reaction equation to back his claims. Let us help him with the correct combustion equation for propane.
C3H8(g) + 5O2(g) + 3CO2(g) + 4H2O(g)
We can clearly see from the reaction equation that Mr. Holmes BBQ produces three times more carbon IV oxide than Mr. Nogaki's BBQ so Mr. Nogaki was right in her claim after all.
Hence the answer!
Explanation:
nH2O=35/18
xH2O=35/18x6.02x10 powered by 23
so, the answer is

im sry if im wrong