To solve this kinematics formula use the following equation:
Vf = Vi + at
Vf = 0 + (9.81 m/s^2)(3 seconds)
Vf = 29.43 m/s and or about 29.4 m/s of reported to 3 significant figures.
Green colored precipitate of iron (||) hydroxide
<span>Well, during the day, the water, as well as the surfaces surrounding the water, are heated by various thermodynamic processes: conduction, convection, radiation, etc. This in turn warms the water molecules in the lakes, streams, rivers, and oceans, thereby transferring heat (their kinetic energy) to the water molecules, which in turn receive that energy from the surrounding surfaces, or directly via radiation/insolation from the sun. When the water molecules attain enough energy, some of them attain enough energy to escape the surface of the liquid and enter the gas phase. Hence, as water is heated, more and more water molecules attain enough kinetic energy to enter the gas phase.</span>
if the scientist finds anything that does not match, they have to carry out further tests
it can guide the consumer's judgement purchase decision on too gently on what the believe the product may contain.
Answer:
121 g/mol
Explanation:
To find the molar mass, you first need to calculate the number of moles. For this, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Because density is comparing the mass per 1 liter, I am assuming that the system has a volume of 1 L. Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = 1.00 atm R = 0.0821 L*atm/mol*K
V = 1.00 L T = 25.0. °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(1.00 atm)(1.00L) = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = n(0.0821 L*atm/mol*K)(298.15 K)
1.00 = (24.478115)n
0.0409 = n
Now, we need to find the molar mass using the number of moles per liter (calculated) and the density.
0.0409 moles ? grams 4.95 grams
---------------------- x ------------------ = ------------------
1 L 1 mole 1 L
? g/mol = 121 g/mol
**note: I am not 100% confident on this answer