Answer:
Seasons occur because Earth is tilted on its axis relative to the orbital plane, the invisible, flat disc where most objects in the solar system orbit the sun. ... In June, when the Northern Hemisphere is tilted toward the sun, the sun's rays hit it for a greater part of the day than in winter.
They both perform photosynthesis and also cell respiration
Answer:
When the concentration of F- exceeds 0.0109 M, BaF2 will precipitate.
Explanation:
Ba²⁺(aq) + 2 F⁻(aq) <----> BaF₂(s)
When BaF₂ precipitates, the Ksp relation is given by
Ksp = [Ba²⁺] [F⁻]²
[Ba²⁺] = 0.0144 M
[F⁻] = ?
Ksp = (1.7 × 10⁻⁶)
1.7 × 10⁻⁶ = (0.0144) [F⁻]²
[F⁻]² = (1.7 × 10⁻⁶)/0.0144 = 0.0001180555
[F⁻] = √0.0001180555 = 0.01086 M = 0.0109 M
Hope this Helps!!!
Answer:
18 g
Explanation:
We'll begin by converting 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Next, we shall determine the number of mole of the glucose, C₆H₁₂O₆ in the solution. This can be obtained as follow:
Volume = 0.5 L
Molarity = 0.2 M
Mole of C₆H₁₂O₆ =?
Molarity = mole / Volume
0.2 = Mole of C₆H₁₂O₆ / 0.5
Cross multiply
Mole of C₆H₁₂O₆ = 0.2 × 0.5
Mole of C₆H₁₂O₆ = 0.1 mole
Finally, we shall determine the mass of 0.1 mole of C₆H₁₂O₆. This can be obtained as follow:
Mole of C₆H₁₂O₆ = 0.1 mole
Molar mass of C₆H₁₂O₆ = (12×6) + (1×12) + (16×6)
= 72 + 12 + 96
= 180 g/mol
Mass of C₆H₁₂O₆ =?
Mass = mole × molar mass
Mass of C₆H₁₂O₆ = 0.1 × 180
Mass of C₆H₁₂O₆ = 18 g
Thus, 18 g of glucose, C₆H₁₂O₆ is needed to prepare the solution.
A bronsted lowry base will react to accept protons