Mass doesn't change, no matter where you take it.
Your first impression of ' 0 ' is totally correct.
Answer:
If density is greater, the object sinks. Saturn is mainly composed of the lightest two gases known, hydrogen and helium. It is the only planet in our solar system whose density is less than water
Explanation:
Answer:

Explanation:
Given that,
The mass of a Hubble Space Telescope, 
It orbits the Earth at an altitude of 
We need to find the potential energy the telescope at this location. The formula for potential energy is given by :

Where
is the mass of Earth
Put all the values,

So, the potential energy of the telescope is
.
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time