To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Answer:
Explanation:
Given

angular velocity 
Combined moment of inertia of stool,student and bricks 
Now student pull off his hands so as to increase its speed to suppose
rev/s
After Pulling off hands so final moment of inertia is

Conserving angular momentum as no external torque is applied




The offspring can have some features for the parents relatives and can look nothing like the parents. They can look exactly alike to more of one parent then the other or have features from both parents as well
Hope this helps :3
Answer:
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. ... increases, the force of gravity decreases. If the distance is doubled, the force of gravity is one-fourth as strong as before.
Answer:
atom -
the smallest particle of a chemical element that can exist.
atomic mass-
the quantity of matter contained in an atom of an element
atomic weight -
ratio of the average mass of a chemical element's atoms to some standard
protons-
stable subatomic particle that has a positive charge equal in magnitude to a unit of electron charge and a rest mass of 1.67262 × 10−27 kg
electrons-
a stable subatomic particle with a charge of negative electricity, found in all atoms and acting as the primary carrier of electricity in solids
neutrons-
a subatomic particle of about the same mass as a proton but without an electric charge, present in all atomic nuclei except those of ordinary hydrogen.
energy levels-
one of the stable states of constant energy that may be assumed by a physical system
[used especially of the quantum states of electrons in atoms and of nuclei. — called also energy state.]
Covalent bonds
the interatomic linkage that results from the sharing of an electron pair between two atoms.
ionic bonds
type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound.
Valence electrons
a single electron or one of two or more electrons in the outer shell of an atom that is responsible for the chemical properties of the atom.
Lewis Dot Diagram
A way of representing atoms or molecules by showing electrons as dots surrounding the element symbol. One bond is represented as two electrons.