The answer is d, gravity is the only force acting on the object
Answer:
No, if a car is going faster. The RPM is obviously higher. If that is higher, you can burn through gas and energy much faster. A car going at 15mph would be cruising and wouldn't have to worry too much about burning our your vehicle.
Explanation:
Answer:
1.73 m/s²
3.0 cm
Explanation:
Draw a free body diagram of the yo-yo. There are two forces: weight force mg pulling down, and tension force T pulling up 10° from the vertical.
Sum of forces in the y direction:
∑F = ma
T cos 10° − mg = 0
T cos 10° = mg
T = mg / cos 10°
Sum of forces in the x direction:
∑F = ma
T sin 10° = ma
mg tan 10° = ma
g tan 10° = a
a = 1.73 m/s²
Draw a free body diagram of the sphere. There are two forces: weight force mg pulling down, and air resistance D pushing up. At terminal velocity, the acceleration is 0.
Sum of forces in the y direction:
∑F = ma
D − mg = 0
D = mg
½ ρₐ v² C A = ρᵢ V g
½ ρₐ v² C (πr²) = ρᵢ (4/3 πr³) g
3 ρₐ v² C = 8 ρᵢ r g
r = 3 ρₐ v² C / (8 ρᵢ g)
r = 3 (1.3 kg/m³) (100 m/s)² (0.47) / (8 (7874 kg/m³) (9.8 m/s²))
r = 0.030 m
r = 3.0 cm
Answer:
C. The final kinetic energy is equal to the initial potential energy.
Explanation:
Based on the Principle of energy conservation:
Sum of the Initial Energy = Sum of the Final Energy
Initial Kinetic Energy + Initial Potential Energy = Final Kinetic Energy + Final Potential Energy..........(1)
Since according to the question:
Initial Kinetic Energy = 0
Final Potential Energy = 0
The equation (1) above reduces to
Initial Potential Energy = Final Kinetic Energy