Answer:
Semiconductor. sorry i'm late
Explanation:
The velocity of the car would be 100 kilometer per hour.
Answer:
Approximately
, assuming that
.
Explanation:
Let
and
denote the mass and acceleration of Spiderman, respectively.
There are two forces on Spiderman:
- Downward gravitational attraction from the earth:
. - Upward tension force from the strand of web
.
The directions of these two forces are exactly opposite of one another. Besides, because Spiderman is accelerating upwards, the magnitude of
(which points upwards) should be greater than that of
(which points downwards towards the ground.)
Subtract the smaller force from the larger one to find the net force on Spiderman:
.
On the other hand, apply Newton's Second Law of motion to find the value of the net force on Spiderman:
.
Combine these two equations to get:
.
Therefore:
.
By Newton's Third Law of motion, Spiderman would exert a force of the same size on the strand of web. Hence, the size of the force in the strand of the web should be approximately
(downwards.)
Answer:
Elastic Collision
Inelastic Collision
The total kinetic energy is conserved. The total kinetic energy of the bodies at the beginning and the end of the collision is different.
Momentum does not change. Momentum changes.
No conversion of energy takes place. Kinetic energy is changed into other energy such as sound or heat energy.
Highly unlikely in the real world as there is almost always a change in energy. This is the normal form of collision in the real world.
An example of this can be swinging balls or a spacecraft flying near a planet but not getting affected by its gravity in the end.
Answer:
The centripetal acceleration of the stone is 5 m/s²
Explanation:
The length of the string to which the stone is attached, r = 1 m
The speed with which the string is rotated, v = 5 m/s
The centripetal acceleration,
, is given as follows;

Therefore, the centripetal acceleration of the stone found as follows;

The centripetal acceleration of the stone,
= 5 m/s².