To solve this equation, simply plug the values into the equation for calculating kinetic energy.
KE = 1/2mv^2
500 = 1/2(m)(67^2)
500 =2244.5m
m = 500/2244.5 = 0.222 kg.
Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string =
linear density of the string =
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
I would think that you would have to do 42/2=21Hz, but I'm not sure...
Answer:
34.45m
Explanation:
Magnitude of a vector is equal to the square root of sum of squares of x & y vectors.
Magnitude =
=
=34.45m
Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1
(b) The velocity of the car before the driver begins braking is
The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is
We can use the following equation of motion to calculate how far the car has travel since braking to stop
Also the distance from start to where the driver starts braking is
So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m