Answer: 0.049 mol
Explanation:
1) Data:
n₁ = 0.250 mol
p₁ = 730 mmHg
p₂ = 1.15 atm
n₂ - n₁ = ?
2) Assumptions:
i) ideal gas equation: pV = nRT
ii) V and T constants.
3) Solution:
i) Since the temperature and the volume must be assumed constant, you can simplify the ideal gas equation into:
pV = nRT ⇒ p/n = RT/V ⇒ p/n = constant.
ii) Then p₁ / n₁ = p₂ / n₂
⇒ n₂ = p₂ n₁ / p₁
iii) n₂ = 1.15atm × 760 mmHg/atm × 0.250 mol / 730mmHg = 0.299 mol
iv) n₂ - n₁ = 0.299 mol - 0.250 mol = 0.049 mol
This is an example of inertia - the body keeps it's energy because there is no force applied to it. When we try to stop it's motion, it resists. A man is not rigidly attached to the bus, so he keeps moving forward, at least until he hits the front window from inside. Answer is D.
False. Theodore Roosevelt was the youngest.
Answer:
the rotational inertia of the cylinder = 4.85 kgm²
the mass moved 7.942 m/s
Explanation:
Formula for calculating Inertia can be expressed as:
For calculating the rotational inertia of the cylinder ; we have;
I ≅ 4.85 kgm²
mg - T ma and RT = I ∝
T =
a = 4.1713 m/s²
Using the equation of motion