Answer:
The correct answer to the following question will be "62.9 %".
Explanation:
The given values are:
The aspirin's initial amount = 5.945 g.
and is polluted containing 2,134 g of sodium sulfate.
After extraction we provided 3,739 g of pure aspirin.
Now,

On putting the values in the above formula, we get
⇒ 
⇒ 
Note: percent = %
Answer:
3.1 kg
Explanation:
Step 1: Write the balanced combustion equation
C₈H₁₈ + 12.5 O₂ ⇒ 8 CO₂ + 9 H₂O
Step 2: Calculate the moles corresponding to 1.0 kg of C₈H₁₈.
The molar mass of C₈H₁₈ is 114.23 g/mol.
1.0 × 10³ g × 1 mol/114.23 g = 8.8 mol
Step 3: Calculate the moles of CO₂ produced from 8.8 moles of C₈H₁₈
The molar ratio of C₈H₁₈ to CO₂ is 1:8. The moles of CO₂ produced are 8/1 × 8.8 mol = 70 mol.
Step 4: Calculate the mass corresponding to 70 moles of CO₂
The molar mass of CO₂ is 44.01 g/mol.
70 mol × 44.01 g/mol = 3.1 × 10³ g = 3.1 kg
the answer is c. Gas molecules will never collide with the walls of the container
The initial concentration of the unknown acid is 0.1900 M.
Explanation:
Titration is a chemical method of analysis to know the concentration and volume of the unknown chemical or analyte.
The formula for the titration is:
Macid x Vacid = Mbase x V base
The volume must be in litres. The volume is given in ml it should be divided with 1000 to obtain values in litre.
Data given are:
volume of acid= 10 ml 0.01 L
Molarity of the acid = ?
volume of the NaOH or base = 15.4 ml or 0.0154 L (equivalence point of the base)
molarity of the base = 0.1234 M
Applying the formula and putting the values, we get
Macid x 0.01 = 0.1234 x 0.0154
Macid = 0.1900 M
The weak acid is having molarity of 0.1900 M against the strong base with molarity of 0.1234M.