Answer:
represents the additional driving force required to overcome barriers such as the large activation energy for the formation of a gas at a metal surface.
I would say the chain rings
I'm assuming that by "miles" you mean moles.
If O2 is the excess reactant, that means Fe is the limiting reactant. That means that the amount of product being formed depends on the amount of Fe reactant present. To calculate the moles of Fe2O3 formed, start with the given 6.4 moles of Fe and use the mole to mole ratio given by the reaction as shown below:
6.4 mol Fe x

=
3.2 mol Fe2O3
Since there is more energy added as heat rises, the particles disperse and have larger movements.
This question is asking for a method for the determination of the freezing point in a solution that does not have a noticeable transition in the cooling curve, which is basically based on a linear fit method.
The first step, would be to understand that when the transition is well-defined as the one on the attached file, we can just identify the temperature by just reading the value on the graph, at the time the slope has a pronounced change. For instance, on the attached, the transition occurs after about 43 seconds and the freezing point will be about 4 °C.
However, when we cannot identify a pronounced change in the slope, it will be necessary to use a linear fit method (such as minimum squares) to figure out the equation for each segmented line having a significantly different slope and then equal them so that we can numerically solve for the intercept.
As an example, imagine two of the segmented lines have the following equations after applying the linear fit method:

First of all, we equal them to find the x-value, in this case the time at which the freezing point takes place:

Next, we plug it in in any of the trendlines to obtain the freezing point as the y-value:

This means the freezing point takes place after 7.72 second of cooling and is about 1.84 °C. Now you can replicate it for any not well-defined cooling curve.
Learn more: