I am
you are
he is
she is
we are
Based on Heisenberg's uncertainty principle, the position and velocity of a particle cannot be determined simultaneously with accuracy.
In other words, Heisenberg's uncertainty principle states that the more accurately we know the position of a particle the less accurately we can know its velocity. Mathematically it is given as:
Δx.mΔv >= h/2π
where: Δx = uncertainty in position
m = mass
Δv = uncertainty in velocity
h = plancks constant
<u>Answer: </u>The concentration of
in the solution is 
<u>Explanation:</u>
pH is defined as the negative logarithm of hydrogen ion concentration present in the solution.
.....(1)
We are given:
pH of solution = 2.5
Putting values in equation 1, we get:
![2.5=-\log [H^+]](https://tex.z-dn.net/?f=2.5%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=10^{-2.5}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-2.5%7D)
![[H^+]=3.16\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.16%5Ctimes%2010%5E%7B-3%7DM)
Hence, the concentration of
in the solution is 
It would be classified as decomposition reaction
Answer:
The new volume of the balloon when the pressure equalised with the pressure of the atmosphere = 494 L.
The balloon expands by am additional 475 L.
Explanation:
Assuming Helium behaves like an ideal gas and temperature is constant.
According to Boyle's law for ideal gases, at constant temperature,
P₁V₁ = P₂V₂
P₁ = 26 atm
V₁ = 19.0 L
P₂ = 1 atm (the balloon is said to expand till the pressure matches the pressure of the atmpsphere; and the pressure of the atmosphere is 1 atm)
V₂ = ?
P₁V₁ = P₂V₂
(26 × 19) = 1 × V₂
V₂ = 494 L (it is assumed the balloon never bursts)
The new volume of the balloon when the pressure equalised with the pressure of the atmosphere = 494 L.
The balloon expands by am additional 475 L.
Hope this Helps!!!