The question mentions a change in temperature from 25 to 50 °C. With that, the aim of the question is to determine the change in volume based on that change in temperature. Therefore this question is based on Gay- Lussac's Gas Law which notes that an increase in temperature, causes an increase in pressure since the two are directly proportional (once volume remains constant). Thus Gay-Lussac's Equation can be used to solve for the answer.
Boyle's Equation:

=

Since the initial temperature (T₁) is 25 C, the final temperature is 50 C (T₂) and the initial pressure (P₁) is 103 kPa, then we can substitute these into the equation to find the final pressure (P₂).

=

∴ by substituting the known values, ⇒ (103 kPa) ÷ (25 °C) = (P₂) ÷ (50 °C)
⇒ P₂ = (4.12 kPa · °C) (50 °C)
=
206 kPa
Thus the pressure of the gas since the temperature was raised from 25 °C to 50 °C is
206 kPa
Answer:
a fruit and oatmeal bar contains 142000 calories.
A nutritional calorie, or kilocalorie, is equal to 1000 calories.
E = 142 kcal · 1000 cal/kcal.
E = 142 000 cal.
Calorie (cal), or small calorie, is the amount of energy needed to heat one gram of water by one degree Celsius.
One small calorie is approximately 4.2 joules.
A calorie is a unit of energy.
Explanation:
hope it helps :)
<span>35.0 mL of 0.210 M
KOH
molarity = moles/volume
find moles of OH
do the same thing for: 50.0 mL of 0.210 M HClO(aq) but for H+
they will cancel out: H+ + OH- -> H2O
but you'll have some left over,
pH=-log[H+]
pOH
=-log[OH-]
pH+pOH
=14</span>
The standard state formation reaction is a chemical reaction in which one moles of substance in its standard state is formed from its constituent element in their standard state.All the substance must be in their most stable state at 100kpa and 25 degrees celsius.
therefore for HF is
1/2H2 +1/2F2 =HF