1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lilit [14]
3 years ago
13

Un lector de DVD, la velocidad de giro es de 5400 rpm. determina el valor velocidad angular en rad/s,la frecuencia y el periodo

si se sabe que w=2pi f
Physics
1 answer:
zubka84 [21]3 years ago
3 0

Responder:

A) ω = 565.56 rad / seg

B) f = 90Hz

C) 0.011111s

Explicación:

Dado que:

Velocidad = 5400 rpm (revolución por minuto)

La velocidad angular (ω) = 2πf

Donde f = frecuencia

ω = 5400 rev / minuto

1 minuto = 60 segundos

2πrad = I revolución

Por lo tanto,

ω = 5400 * (rev / min) * (1 min / 60s) * (2πrad / 1 rev)

ω = (5400 * 2πrad) / 60 s

ω = 10800πrad / 60 s

ω = 180πrad / seg

ω = 565.56 rad / seg

SI)

Dado que :

ω = 2πf

donde f = frecuencia, ω = velocidad angular en rad / s

f = ω / 2π

f = 565.56 / 2π

f = 90.011669

f = 90 Hz

C) Periodo (T)

Recordar T = 1 / f

Por lo tanto,

T = 1/90

T = 0.0111111s

You might be interested in
What is the time constant of a series circuit where the capacitor is 0.330μF and the resistor is 10Ω ?
PtichkaEL [24]

Answer:

\tau=3.3*10^{-6}s

Explanation:

Take at look to the picture I attached you, using Kirchhoff's current law we get:

C*\frac{dV}{dt}+\frac{V}{R}=0

This is a separable first order differential equation, let's solve it step by step:

Express the equation this way:

\frac{dV}{V}=-\frac{1}{RC}dt

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

\int\limits^V_v {\frac{dV}{V} } =-\int\limits^t_0 {\frac{1}{RC} } \, dt

Evaluating the integrals:

ln(\frac{V}{v})=e^{\frac{-t}{RC} }

natural logarithm to both sides in order to isolate V:

V(t)=ve^{-\frac{t}{RC} }

Where the term RC is called time constant and is given by:

\tau=R*C=10*(0.330*10^{-6})=3.3*10^{-6}s

3 0
2 years ago
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent
azamat

The wavelengths of the constituent travelling waves CANNOT be 400 cm.

The given parameters:

  • <em>Length of the string, L = 100 cm</em>

<em />

The wavelengths of the constituent travelling waves is calculated as follows;

L = \frac{n \lambda}{2} \\\\n\lambda = 2L\\\\\lambda = \frac{2L}{n}

for first mode: n = 1

\lambda = \frac{2\times 100 \ cm}{1} \\\\\lambda = 200 \ cm

for second mode: n = 2

\lambda = \frac{2L}{2} = L = 100 \ cm

For the third mode: n = 3

\lambda = \frac{2L}{3} \\\\\lambda = \frac{2 \times 100}{3} = 67 \ cm

For fourth mode: n = 4

\lambda = \frac{2L}{4} \\\\\lambda = \frac{2 \times 100}{4} = 50  \ cm

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.

The complete question is below:

A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:

A. 400 cm

B. 200 cm

C. 100 cm

D. 67 cm

E. 50 cm

Learn more about wavelengths of travelling waves here: brainly.com/question/19249186

5 0
2 years ago
At a rock concert, the sound intensity 1.0 m in front of the bank of loudspeakers is 0.10 W/m2. A fan is 30 m from the loudspeak
aliina [53]

Explanation:

Below is an attachment containing the solution.

5 0
3 years ago
A boy throws a ball up into the air with a speed of 8.2 m/s. The ball has a mass of 0.3 kg. How much gravitational potential ene
diamong [38]
We can use the law of conservation of energy to solve the problem.

The total mechanical energy of the system at any moment of the motion is:
E=U+K = mgh + \frac{1}{2}mv^2
where U is the potential energy and K the kinetic energy.

At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:
E_i = K_i =  \frac{1}{2}mv^2 =  \frac{1}{2}(0.3 kg)(8.2 m/s)^2=10.09 J

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:
E_f = U_f
But the mechanical energy must be conserved, Ef=Ei, so we have
U_f = K_i
and so, the potential energy at the top of the flight is
U_f = K_i = 10.09 J
7 0
3 years ago
Read 2 more answers
What is championship game of baseball called? The World Series The Super Bowl The World Cup​
emmasim [6.3K]

Answer:

The World Series

Explanation:

The Super Bowl is the championship American Football game, and the World Cup is the Soccer/Football game.

American Football and Football are different things. The first is what Americans call football, while the other is what Americans call soccer. It is confusing.

6 0
2 years ago
Other questions:
  • The transfer of energy by electromagnetic
    11·2 answers
  • Rock a is dropped from a cliff and rock b is thrown upward from the same position on the cliff.
    13·1 answer
  • What type of landform is depicted here? a. a mountain b. a depression c. a valley​
    15·1 answer
  • An empty capacitor is connected to a 12.0 V battery and charged up. The capacitor is then disconnected from the battery, and a s
    10·1 answer
  • the metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off. the s
    13·1 answer
  • Why is mass a better unit for measuring matter then weight
    6·2 answers
  • Please Help Me!!!!!!​
    6·1 answer
  • Will give brainliest.... Physics with work please
    13·1 answer
  • Explain how to convert a galvanometer to an ammeter
    12·1 answer
  • How does the "human" part of human resources influence how companies need to treat these resources?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!